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R-ProjNet: an optimal rotated-projection neural network for 
wood segmentation from point clouds
Sheng Xu a, Xin Lia, Hongxin Yangb and Shanshan Xua

aCollege of Information Science and Technology, Nanjing Forestry University, Nanjing, China; bDepartment 
of Geomatics Engineering, University of Calgary, Calgary, Canada

ABSTRACT
This work aims to provide a deep learning framework to segment 
woods from tree point clouds. We develop a novel preprocessing 
layer before the classical sampling and convolution structure called 
the projection layer to organize 3D point clouds into 2D points. 
Input data are transformed into projection data along axis and 
planes for the subsequent convolution process, which helps 
decrease the complexity of networks. In order to obtain optimal 
and effective projection data for capturing local features, we for
mulate the 2D transformation in the learning process using two 
learnable angle parameters. The projection map is updated in the 
learning process for capturing geometric structure information, 
which plays an important role in wood point segmentation. 
Experiments show that we have achieved the loss and misclassifica
tion error of 0.41% and 8%, respectively, on wood points extraction 
from handheld laser scanning data. Besides, we also achieve the 
correctness, completeness and F-score of 90.4%, 91.5% and 0.91, 
respectively, in a public vehicle laser scanning dataset.
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1. Introduction

Nowadays, laser scanning technology has played a significant role in mapping 3D space 
information of vegetation, such as the crown delineation (Sun et al. 2022), instance 
segmentation (Wang 2020) and wood-leaf separation (Hu, Pan, and Zhong 2020). As 
one of the key steps in vegetation mapping, the wood point extraction is the foundation 
of tree structure analysis. Commonly used LiDAR (Light Detection and Ranging) devices 
are mounted on airborne systems (Yun et al. 2021), terrestrial systems (Hui et al. 2021), 
vehicle systems (Chen et al. 2019) and handheld systems (Vatandaşlar and Zeybek 2021; 
Balenović et al. 2021). There are lots of machine learning methods for the task of 
classifying wood points to study tree structures.

In terms of the classical methods, the existing algorithms are often in two steps, i.e., 
feature extraction and classifier training. In the method of Li et al. (2020), they present 16 
local statistical geometrical features from the sphere domain of each point to represent 
the input data and use classical machine learning methods to separate point clouds 
directly. Hu, Pan, and Zhong (2020) develop a framework for the wood separation by 
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formulating locally convex connected patches to segment branch points from the orga
nized supervoxels, and then they use the k-means++ clustering algorithm to further 
segment connected leaves and branches. Moorthy et al. (2020) combine geometrical 
features defined by radially bounded nearest neighbours at multiple spatial scales and 
then choose traditional machine learning methods, e.g., random forest, to split wood 
points.

In terms of the deep learning approaches, the commonly used structure is the con
volutional neural networks, which extract features from input data by capturing local 
features based on the convolution layers and integrating global features based on the full 
connection layers. In the method of Xi, Hopkinson, and Chasmer (2018), they propose 
a deep 3D fully convolution network to filter both stem and branch points, and Windrim 
and Bryson (2020) develop a deep learning framework for tree detection, segmentation, 
and wood reconstruction using the fully convolutional encoder-decoder neural network 
model. Compared with the traditional machine learning algorithms, deep learning meth
ods need little handcraft features and can adapt to various densities and occlusions in 
input point clouds, which brings a high accuracy and efficiency in the learning processing. 
However, learning from point clouds is not an easy task due to the large amount of 
computation in 3D space, and it is difficult to capture edges, contours and curves 
information from point clouds by the convolution process as in 2D images.

In order to address issues in the above-mentioned methods, such as the large amount 
of computation in the 3D convolution process and the limited feature maps in the training 
process, we contribute a projection layer to convolutional neural works for helping 
capture geometrical structure information of rotated tree stems, i.e., the linear and 
cylindrical shape, called R-ProjNet (Rotated-Projection Neural Network). To make the 
projection effective and correct, we update the projection angle in the learning process 
by minimizing the loss error of networks. Research related to tree structure analysis, crown 
segmentation, and 3D modelling can be benefited from the output of our developed 
network.

2. R-ProjNet formulation and parameters learning

The R-ProjNet uses sampling and convolution layers to capture local features. A key step is 
to formulate a projection layer to obtain contours and structures of input point clouds. In 
this work, we formulate the projection layer right before the sampling layer for achieving 
2D point clouds to obtain features. The input data are points with coordinate information 
only, which will be transformed into 2D images at a fixed size. Input scene will be split into 
regions grouped by the DBSCAN strategy (Xu, Hu, and Xie 2022) using the Euclidean 
distance information. For each region, they share the same label in the classification, 
which is regarded as the input of networks. The output shows the label of points from 
current 3D regions.

Figure 1 shows a shallow R-ProjNet. We denote the projection layer as Pi, the sampling 
layer as Si, the convolution layer as Ci, and the full connection layer as Fi, where i 
represents the ith layer. As shown in input data, the projection of regions from wood 
points and foliage points are quite different, which provides cues for the separation of 
wood and foliage points. Wood points are dense and own the same principal direction in 
a local region, but foliage points are massive and sparse. The optimal 2D points for each 
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learning process are calculated by our projection layer. For each projection layer, there is 
one projection matrix to be updated in the learning process.

In order to obtain the optimal 2D point clouds of input data, we add two learnable 
parameters in the projection layer, i.e., θ and ϕ to show the rotation angle in the vertical 
and horizontal direction, respectively. The projection matrix is calculated as 

P ¼
cos ϕi ; 0; � sin ϕi � cos θi
� cos ϕi ; 0; � cos θi � sin ϕi

0 ; 0; cos ϕi

0

@

1

A (1) 

Points are first rotated θ along the vertical direction (z-axis) counterclockwise, and then 
points are rotated ϕ along the horizontal direction (x-axis). Finally, those rotated points 
are projected on the xOz plane. As shown in Figure 1, we have two modules P1-S2-C3 and 
P4-S5-C6. Each module contains one projection layer (P1 or P4), sampling layer (S2 or S5), 
and convolution layer (C3 or C6). Results are shown in the final output layer after the full 
connection layer, which can be 1 (target wood points) and 0 (others). Besides the classical 
parameters of weight and bias in convolution layers, there are two learnable parameters 
of the developed R-ProjNet to be updated in the learning process, namely the θ and ϕ. We 
use θþk to stand for the update result of the rotation angle θk in the network. Similarly, for 
ϕþk and ϕk . Newly added parameters are used to find the optimal projection plane for 
learning.

In the projection, we want an optimal projection angle which captures more useful 
information for our classification. The optimal angles can be found by searching a large 
number of projection angles at the cost of computation. It is worth noting that in the 
learning stage, we do not require to train samples from every view. This is a significant 
improvement compared with just using fixed projections in many directions in terms of 
the algorithm complexity. There is no need to input various parameters for setting 
projection angles. We train the classifier to obtain the optimal projection angle for each 
input pattern, which is more flexible and robust to different scenes.

Figure 1. Structure of a shallow R-ProjNet. The color scale in input is based on the elevation of points, 
which is used to render the height information. Red regions in output stands for wood points and 
green regions stands for foliage points.
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The loss function is based on the cross-entropy and the update of θ and ϕ is based on 
the backpropagation using the gradient descent strategy as shown in the classical 
convolutional neural networks. We update the newly added parameters based on the 
loss error E as shown in Equation (2), where η is a user-defined learning rate based on the 
classification task. 

θþk ¼ θk � η �
@E
@θk

;ϕþk ¼ ϕk � η �
@E
@ϕk

(2) 

In the forward prorogation, we have Oi;iþ1;iþ2 ¼ fðNi;iþ1;iþ2Þ as shown in Figure 1, where 

the activation function f can be ReLU or LeakyReLU, and we denote f 0 ¼ @Oi;iþ1;iþ2
@Ni;iþ1;iþ2

. Denote 

E0 as the derivative of E with respective to the output of layers, and we present Equation 
(3) as 

@E
@θ4;5;6

¼
@E

@O4;5;6
�
@O4;5;6

@N4;5;6
�
@N4;5;6

@θ4;5;6
(3) 

Let’s continue the propagation process, and we present Equation (4) as 

@E
@θ1;2;3

¼
@E

@N1;2;3
�
@N1;2;3

@θ1;2;3 

¼
@E

@O4;5;6
�
@O4;5;6

@N4;5;6
�
@N4;5;6

@O1;2;3
�
@O1;2;3

@N1;2;3
�
@N1;2;3

@θ1;2;3
(4) 

In the implementation, we update θ based on Equation (2). Similarly, we use the 
backpropogation rules to obtain @E

@ϕ4;5;6 
and @E

@ϕ1;2;3 
to update ϕ4;5;6 and ϕ1;2;3, respectively. 

Subscripts in θi;iþ1;iþ2 and ϕi;iþ1;iþ2 represent the layer of the network in the module.

3. Experiments and evaluation

Figure 2 demonstrates the experiment step of our extraction. Each tree is required to be 
scanned by the LiDAR system to generate the corresponding 3D point clouds. Then, 

Figure 2. Data collection and processing.
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individual tree point clouds are clustered and input for the R-ProjNet for wood point 
extraction. This section tests the proposed R-ProjNet on handheld and vehicle laser 
scanning data, respectively, to show our extraction results. In terms of the handheld 
laser point clouds, data are collected by GeoSLAM ZEB-HORIZON, which scans points at 
300,000 points per second at the field of view 360� � 270�. The maximum range is 100 m. 
The range of the scanned noise falls in � 30 mm. In the collection, we close the loop as 
often as possible in order to minimize error and improve the accuracy of the resulting 
point cloud. This scanner is quite easy to use and suitable for the point collection of street 
trees. The input scene is located at Linggu Temple, Nanjing, China. Roads are covered by 
street trees of Platanus orientalists as shown in Figure 3(a). Our extraction results are 
shown in Figure 3(b), which achieves the most wood points from street trees.

In the evaluation, the reference of tree woods is manually segmented from input points 
through an opensource point visualization software (www.cloudcompare.org). In experi
ments, we prepare 252 instances of points contain various tree regions as shown in 
Figure 4, and we set the ratio of the training set, validation set, and test set for each 
label as 7:1:2, respectively. The training set is used to tune weights for the network, the 
validation set is prepared for the detection of the overfitting, and the test set is designed 
for the accuracy calculation.

The evaluation metrics include cross-entropy loss error (Loss) and misclassification 
error (MCR). We try different network structures for the evaluation, and we show results 
in Table 1 with the same number of kernels in each layer. The first column ‘ID’ means the 
experiment number, ‘NoL’ means the number of layers in the network, ‘PSC’ means the 
number of projection-sampling-convolution modules, ‘c’ means the kernel size of each 
convolution layer, ‘F’ means the number of full connection layer, ‘Size’ is the size of input 
data (e.g., 32 � 32 pixels), ‘Loss’ is the entropy loss error and ‘MCR’ is the misclassification 
error calculated by the ratio of correctly classified objects. As shown in ‘Loss’ and ‘MCR’, 
we have achieved the best performance at ID #2. Experiments from ID #1 to #3 show that 
R-ProjNet succeeds in achieving high performance in the wood point extraction with 
fewer layers. Parameters are easy to be learned based on the minimization of Loss error. 
Experiments from ID #4 to #6 shows that, although we add more full connection layers or 
enlarge the size of input data, we fail to improve our accuracy greatly. This means that if 
users add more layers in the learning process, they are required to choose more efficient 
and effective optimization methods, e.g., dropout and batch normalization strategy. 
Experiments were done on a Windows 10 Enterprise 64-bit, Intel Core i7-6900k, 3.20  

Figure 3. Extraction performance of R-ProjNet on handheld laser scanning data. (a) extraction of 
region of interests from handheld laser scanning data using R-ProjNet. (c) extracted wood points by 
R-ProjNet.
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GHz processor with 64 GB of RAM, and computations were carried on Matlab R2019a. We 
use the matpcl tool (ww2.mathworks.cn/matlabcentral/fileexchange/40382-matlab-to- 
point-cloud-library) in the coding tasks, which is MATLAB code that allows interfacing 
with the Point Cloud Library (PCL).

In order to show our improvement on the wood point extraction from Figure 5(a), we 
choose two methods of wood extraction for the comparison, including Moorthy et al. 
(2019) and Zhang et al. (2019). It is worth noting that the chosen compared methods are 
re-implemented by ourselves using Matlab R2019a based on their published algorithm 
description. In Moorthy et al. (2019), the authors extract Eigen features from points and 
use the Random Forest algorithm to classify points as shown in Figure 5(b), which fails to 
classify wood points covered by crowns. In Zhang et al. (2019), the authors use the normal 
change rate to thin branches, and calculate geometric features for filtering wood points 
using the height-to-width ratio as shown in Figure 5(c), which works well in wood point 
segmentation. Our results are shown in Figure 5(d), which achieves the most of wood 
points from the input handheld laser scanning data with fewer foliage points. The 

Figure 4. Demonstration of examples used for training. The color scale shows the elevation of points, 
which is used to render the height information.

Table 1. Accuracy of different network structures.
ID NoL PSC c F Size Loss MCR

1 7 2 (5,7) 1 32 0.52 0.13
2 10 3 (5,3,3) 1 32 0.41 0.08
3 13 4 (3,3,3,3) 1 32 0.55 0.22
4 11 3 (5,3,3) 2 32 0.57 0.26
5 12 3 (5,3,3) 3 32 0.76 0.35
6 10 3 (5,3,7) 1 64 0.44 0.10
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visualization of wood and foliage points segmentation based on our results is shown in 
Figure 5(e).

In order to show our robustness, we test our performance on the wood point extrac
tion of road scenes from the public benchmark (Vallet et al. 2015). The test urban scene is 
located in Paris collected in January 2013, and the imagery of the test scene is shown in 
the left of Figure 6. Laser point clouds are acquired by Stereopolis II, a mobile laser 
scanning system developed at the French National Mapping Agency (IGN). Please refer 
to http://data.ign.fr/benchmarks/UrbanAnalysis/index.html for more details. The size of 
the test data is 173 m � 352 m containing around 50 million points as shown in the right 
of Figure 6.

In order to evaluate the extraction quantitatively, the result of a point is divided into TP 
(true positive), FN (false negative) and FP (false positive). TP means that a wood point is 
extracted correctly from the input scene. FN means that a wood point is wrongly detected 
as the background point. FP means that a background point is wrongly recognized as 
a wood point. Similarly, the ground truth of wood components for the reference is 
obtained manually from the input scene attentively through CloudCompare. In the 
evaluation, we calculate the correctness r, completeness p and F-score as

Figure 5. Comparison of the wood point segmentation methods. (a) input data. (b) results of Moorthy 
et al. (2019). (c) results of Zhang et al. (2019). (d) results of our R-ProjNet. (e) visualization of wood and 
foliage points based on our results.

Figure 6. Input data collected by vehicle laser systems. (a) the 2D imagery. (b) 3D point clouds.
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r ¼
TP

TPþ FP
; p ¼

TP
TPþ FN

; F � score ¼
2� TP

2� TPþ FPþ FN
(5) 

TP, FP and FN here represent the number of true positives, false positive and false 
negative, respectively. The correctness measures the ratio of correctly extracted wood 
components in results, the completeness measures the percentage of correctly extracted 
wood components in the reference. F-score is the harmonic mean of correctness and 
completeness. The input single tree data are obtained by optimizing supervoxels for 
grouping points from the same individual trees (Xu et al. 2018). There are 182 trees in the 
test scene and we extract 167 fully individual instances from the input data as shown in 
Figure 7. We demonstrate results in six regions to highlight our performance. The average 
point-based correctness, completeness and F-score are 90.4%, 91.5% and 0.91, respec
tively, which is better than the published wood points detection accuracy from Xia et al. 
(2015) (F-score 0.90), Fan, Chenglu, and Jonathan (2016) (F-score 0.88) and Guan et al. 
(2016) (F-score 0.89). In this case, we also test the results of training process by setting 
fixed projection angles for every 30 degrees. The training stage incurs lots of feature 
maps, and we ignore parameters θ and ϕ. Results show that the learning correctness, 
completeness and F-score are decreased to 79.1%, 76.7% and 0.78, respectively. Although 
we can improve the classification accuracy by using a small-angle interval, it is a tough 
work for searching the best angles efficiently. Our misclassification caused by street lamps 
and traffic signs, which required a post-process step to remove false woods. Although 
methods based on quantitative structure models, e.g., TreeQSM (Raumonen et al. 2013), 
provide 3D branch models conveniently, these methods work slowly for dense point 
clouds. Besides, they highly rely on the structure of branches and tend to fail when tree 
branches are incomplete or occluded. They usually connect spatially neighbouring tree 
branches directly using curved pipes.

4. Conclusions

In this work, we develop a new projection convolutional neural network for the wood 
point extraction called R-ProjNet. The projection is based on the rotation of point clouds 
along different axis and planes. In order to obtain the optimal projection for the 

Figure 7. Results of the extraction of wood points from particular regions of the vehicle-based laser 
scanning data using R-ProjNet.
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subsequent sampling and convolution process, we formulate two parameters in the 
proposed R-ProjNet for tuning the projection. Those two parameters can be updated in 
the learning process by minimizing errors. This work indicates that first, mobile laser 
scanning systems can capture 3D information of trees correctly, which provides an 
effective way to analyse 3D space. Second, the added projection layer can help convolu
tional neural networks capture structure information, such as linear and cylindrical shapes, 
for detecting wood points. Finally, the formulated parameters in the projection layer 
provide more efficient 2D points for the training task at a few layers. Experimental results 
show that we have achieved loss and misclassification errors of 0.41 and 0.08, respectively, 
on the collected handheld laser scanning point clouds, and we obtained the correctness, 
completeness and F-score of 90.4%, 91.5% and 0.91, respectively, on the vehicle laser 
scanning data.

Although we have achieved high performance in experimental scenes, the proposed 
network has one limitation to be tackled in future work. For complex learning tasks, i.e., 
more labels to be classified, one is required to add more layers to capture features, but the 
proposed network is difficult to be backpropagated when there are more layers. Because 
we introduce more parameters in the training.
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