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Separation of Wood and Foliage for Trees From
Ground Point Clouds Using a Novel

Least-Cost Path Model
Sheng Xu , Kai Zhou, Yuan Sun, and Ting Yun

Abstract—Nowadays, laser scanning technology has provided an
effective and nondestructive approach to reveal the forest’s devel-
opmental process and physiological properties. For the purpose of
obtaining the 3-D spatial structure and skeleton of trees, this article
addresses the separation of wood and foliage from the forest using
two phases. The first global phase develops a pointwise supervised
learning framework to classify forest point clouds. In order to
improve the classification accuracy, we design new features for the
learning process, which supplements the current geometric features
in terms of the topological information. The second local phase
designs a new least-cost path model to further separate wood and
foliage points. The separation of branch points is formulated as
an energy function and optimized by the dynamic programming
technique. Experiments on different plots show that points from
stems and branches are detected as wood points completely and
correctly. The achieved average completeness, correctness, and F1

score of the wood and foliage separation are 91.25%, 90.34%, and
0.91, respectively, which is promising to the phenotyping study
related to the organism’s physical form and structure.

Index Terms—Least-cost path model, phenotyping study, point
clouds, pointwise classification, separation.

I. INTRODUCTION

PHENOTYPING study is significant to the expression of the
genetic code, which is related to the organism’s physical

form and structure. Different from the biological methods, laser
scanning technology can provide an effective, nondestructive,
and automatic approach to reveal the forest’s physiological
properties by fully scanning 3-D trees.

Nowadays, laser scanner systems are widely used in 3-D veg-
etation information collection. Airborne laser scanning (ALS) is
the main technique to capture and analyze the canopy structure
of forest regions, for example, the estimation of the canopy
structure and biomass based on the topographic metrics [1].
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Although ALS can retrieve points of a large-scale forest, the
collection cost is usually high. A low-cost way to analyze tree
crowns is based on the unmanned aerial vehicle point clouds [2],
which collects points for accessing tree crowns at close range.
Mobile laser scanning (MLS) is widely used in outdoor environ-
ment analysis, such as the plane extraction [3] and urban object
classification [4]. In the field of the urban forest, researchers put
their efforts to study street tree attributes, such as stem extraction
and segmentation [5]. Personal laser scanning, which belongs to
portable laser scanning systems, e.g., backpack laser scanning
systems and handheld laser scanning systems, is flexible in data
collection. For example, Xu et al. [6] choose the handheld laser
scanning system to access more nonphotosynthetic components
covered by crowns, including the second and third branching
order of trees. TLS is popular in the analysis of forests, which
succeeds in detecting geometric characteristics of points to
identify objects [7], such as stems [8], trees [9], crowns [10],
and foliage [11].

In the tree 3-D structure analysis, it is not effective to obtain
plenty of nonphotosynthetic components from the forest by ALS
and MLS, because branches are easily covered by foliage. By
optimizing the plot size and scanner position, TLS has more
probability to obtain abundant nonphotosynthetic components
from crowns. Therefore, we mainly choose TLS point clouds
for the wood and foliage separation in this study. Due to the
fact that forest collected by TLS is usually in huge volumes of
unorganized point clouds, with no topological information, and
containing a certain number of outliers, noise, and overlapping
points in multiple scans, the processing methods designed for
ALS and MLS are often less effective in TLS. Although the
combination of different platforms [12] can improve the distin-
guishment accuracy of point clouds, the registration of different
scanner points is still a challenging task. In order to obtain the
spatial structure of trees from TLS point clouds, one has to
extract and separate wood and foliage from forests, which is
the target of this study. Our two main contributions are 1) the
calculation of topological information to supplement geometric
features for classifying TLS point clouds and 2) the formulation
and optimization of a least-cost path model to track branches
covered by crowns.

It is worth noting that there is no existing point cloud re-
search related to the feature calculation of surface intersection
for topological information. The topological feature, which
plays an important role in trunk detection as a supplement for
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geometric features, is difficult to obtain from unorganized point
clouds. Besides, the existing wood points detection depends on
the completeness of branch points and fails to connect break
branches caused by the occlusion and incompleteness, which
will be solved by the proposed least-cost path model based on a
branch tracking strategy.

II. RELATED WORK

Nowadays, there are lots of methods have been proposed for
achieving tree structure information from TLS point clouds, e.g.,
the diameter at height, the under branch height, and the leaf
area index. The existing methods include model-based meth-
ods, feature-based methods, and deep-learning-based methods,
which will be analyzed and discussed in this section.

The model-based methods are often used for individual tree
and stem extraction. With regard to the pole detection, Liang
et al. [13] use the spatial distribution properties of points to
estimate the location of stems. Their cylinder fitting works well
at wood points that are from vertically standing stems, but the ac-
curacy is decreased when stems are incomplete or occluded. Xia
et al. [8] focus on stem detection by identifying linear structures
and merging disconnected stem parts using a direction-growing
algorithm. Their method does not require information about
the terrain surface, but needs prior knowledge of targets for
the curve model calculation. Lau et al. [14] investigate the
branch architecture by proposing a 3-D quantitative structure
model. Their model chooses the cylinder as the primitive to fit
wood points in the first, second, and third branching orders,
when branches are complete and fewer outliers in the primitive
fitting. Zhang et al. [15] separate stems from the other points by
calculating and modeling the normal change rate. Their method
works well for those complete stems, but since the curvature
of occluded regions is undefined, the extraction of discontinued
stems is tackle to detect. The model-based methods work well
and are easy to implement in straight trunks, because of their
similar point distribution. However, those segmentation methods
are easy to fail in data with occlusion and incompleteness.

The feature-based methods are often used for the wood and
foliage classification. Tao et al. [16] introduce a geometric
feature method for wood–leaf separation, e.g., circlelike shapes
and line segments. The drawback lies in that their constant
search radius is difficult for sparse points with little shape
information. Ma et al. [17] propose more features to contain
structural information of foliage elements based on the spatial
distribution patterns and use the Gaussian mixture model to
classify points. Although there is no need to prepare training
samples, the point distribution of different trees is various in
forest environments. Soon afterward, scholars believe that more
features will bring high accuracy, Wang et al. [18] show that
the classical machine learning methods can classify wood and
foliage by using abundant geometric information. However, the
feature extraction of points is sensitive to noise and density. Chen
et al. [19] propose a point-based method for stem detection using
single-scan TLS data. They design an adaptive radius for search-
ing the eigenvalue features of points, and classify stem points
by the support vector machine (SVM) directly. Although their
method is easy to implement, they need to calibrate data to ensure

that the reflectance of the tree leaves and branches is smaller
than that of stems. Instead of the pointwise classification, Koma
et al. [20] conduct the region growing to obtain leaf-
morphological features for the classification and obtain a high
accuracy in the fixed environment by tuning optimal parameters.
Li et al. [21] concern about the classification by the gap prob-
abilities features resulting from leaves and woody materials.
Although theoretically, the laser reflectance of wood hit and
leaf hit is different, the accuracy is difficult to improve in
forests due to the laser range limitations. The feature-based
methods are more robust in occlusion and incompleteness.
However, 3-D feature extraction in point clouds is difficult,
because geometric features often fail in splitting overlapping
objects.

Nowadays, more and more researchers move to deep-
learning-based methods for point cloud processing. In the work
of [22], they propose a voxel-based deep learning method to
classify tree species. They first extract individual trees based on
the density of points and, then, perform a voxel-based rasteriza-
tion process to represent low-level features by the convolutional
neural network (CNN) model. In the work of [23], they use the
CNN model to extract the high-level representation of features.
The key idea is to calculate the local geometric features, global
geometric features, and full-waveform features of neighboring
laser points and, then, transform those features into 2-D fea-
tures as the input of a CNN model for a 3-D labeling task. In
the work of [24], they propose a deep 3-D fully convolution
network (FCN) to filter both stem and branch points. To train
the 3-D FCN, reference stem and branch points are delineated
semiautomatically. They achieve high overall accuracy (OA) of
0.94 for the stem and branch. Since their features derived from
the 3-D covariance matrix are computed using the surrounding
neighborhood of points, they can only capture local informa-
tion resulting in requiring the application at multiple scales
to describe the diversity of objects. In the work of [25], they
develop a deep supervised machine learning framework for tree
detection, segmentation, and stem reconstruction using the fully
convolutional encoder–decoder neural network model. Their
method adapts to various densities and partial occlusions in point
clouds. Although deep learning-based methods achieve a high
performance in the point cloud classification, the supervised
learning method needs to manually segment a large number of
trees for setting the training set, which is often tedious, redundant
in the complex outdoor scene. Besides, they usually require
a high-performance graphics processing unit for accelerating
algorithms.

The wood and foliage unsupervised separation methods are
in a pipeline of the following three steps:

1) feature extraction of point clouds. The most frequently
used features are based on geometric primitives, includ-
ing shape primitives, e.g., lines, surfaces and volumetric
shapes, and structure primitives, represented by skeletons
and edges [26];

2) classification of input points into different regions using
supervised or unsupervised methods; and

3) refinement of results by removing false
points/clusters/components/instances from the achieved
positive groups.
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Fig. 1. Flowchart of the proposed wood and foliage separation, including feature extraction, feature selection, classification, shape fitting, and separation.

Although the aforementioned methods benefit the tree struc-
ture extraction a lot, there are still two unsettled issues in the
structure extraction, including 1) how to calculate and select
features of points for the high-performance pointwise classifi-
cation and 2) how to separate discontinued branches, when there
is little neighbor information.

This article targets the separation of wood and foliage from
TLS point clouds for delineating the tree structure with the
coordinate information only. In order to overcome limitations
in tree structure extraction, this study proposes two phases of
optimization for improving the wood and foliage separation. The
first global phase intends to use a supervised learning method for
classifying point clouds into four regions, including 1) crowns,
2) stems, 3) bushes, and 4) ground points. Extracted features
contain both geometric and topological information. In order
to improve the accuracy and efficiency, only high-performance
features will be selected for the pointwise classification. The
second local phase aims to fine separate wood from foliage
covered by tree crowns based on our proposed least-cost path
model. The energy function for building candidate paths is
constrained by a data term to collect the regional branch points
and a smoothness term to track the overall branch information.
The path penalty is minimized by the dynamic programming
technique globally.

III. METHOD

As shown in Fig. 1, our flowchart mainly contains five stages.
Stage 1 is to do the feature extraction. Except for geometric fea-
tures based on the eigenvalue of points, we calculate topological
features. Stage 2 is to deal with feature selection, which aims to
optimize the dimension of features. Stage 3 is to classify input
points into different regions based on the selected features. Stage
4 is to do a simple cylinder fitting to segment individual trees
using RANSAC (i.e., Random Sample Consensus). Stage 5 is to
separate branches and leaves based on our proposed least-cost
path model. Two key steps are the first and last stages, and the
expected output is the separation of wood and foliage points.

A. Feature Extraction

The most commonly used features for the pointwise classifica-
tion are based on geometric information as listed in [27], such as
the sum of eigenvalues, planarity, and linearity. Those features
are calculated by the combination of eigenvalues and aim to
capture the shape clues of objects. However, to the best of the
authors’ knowledge, there is no research to calculate topological

features for the point cloud classification, which plays an impor-
tant role in capturing global information of targets. Since point
clouds are unorganized and containing limited information, i.e.,
the coordinate of x, y, and z only, the calculation of topological
information is a challenging task.

Our idea is based on the knowledge that for each nonisolated
3-D point, there can be only two main conditions. 1) The point
lies on a surface. 2) The point lies in the intersection of planes,
i.e., contours or corners. The rest of the points are regarded
as scatter points, for example, points from foliage regions.
Compared with surface points and intersection points, scatter
points are in a much less scale. Besides, points from surfaces,
contours, and corners contain branching order information for
the tree structure. Therefore, we focus on the feature extraction
of points from the aforementioned two conditions. Inspired by
the detection of line intersection in 2-D images [28], we know
that the intersection of lines can be detected based on the gray
intensity difference. Extend this conclusion to point clouds, we
know that 1) it is required to define the gradient of point clouds
based on the difference of neighbor points, and 2) if there is
no intersection of planes around a nonisolated point p, p is on a
plane; if p is from the intersection of planes, p lies in the contours
or corners.

Gradient calculation. In the 2-D image, gray is used to show
the brightness level of a pixel. However, our input data are
limited to the coordinate information only. We try to use the
number of points in a voxel to simulate the local density of
points. The gradientG is the difference of the density I as shown
in

G(x, y, z)

=
∑

Δx,Δy,Δz

e
(Δx2+Δy2+Δz2)

2σ2 [Ix+Δx,y+Δy,z+Δz − Ix,y,z]
2

(1)

where I is the number of points in a voxel at (x, y, z),
(Δx,Δy,Δz) is the step size between two voxels, and σ2 is
the density variance of neighbor voxels. Based on the Taylor
expansion at the first-order term, we have

G(x, y, z) = (Δx,Δy,Δz)M(Δx,Δy,Δz)� (2)

where the 3 × 3 symmetric matrix M is

M =

⎡
⎢⎣

A A ·B A · C
A ·B B B · C
A · C B · C C

⎤
⎥⎦ (3)
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A =

(
∂I

∂x

)2

e
(Δx2+Δy2+Δz2)

2σ2 (4)

B =

(
∂I

∂y

)2

e
(Δx2+Δy2+Δz2)

2σ2 (5)

C =

(
∂I

∂z

)2

e
(Δx2+Δy2+Δz2)

2σ2 . (6)

M is a semipositive symmetric matrix, and e
(Δx2+Δy2+Δz2)

2σ2

is a window function to weight voxels. Its eigenvectors α, β,
and γ are mutually orthogonal and no less than 0. G is related
to the local autocorrelation function and M describes the shape
at the origin [28]. M can be regarded as a rotationally invariant
descriptor, which is suitable for extracting information from the
unorganized point cloud.

Intersection detection. For a point p, if α � β, and α � γ, p
tends to be on a certain plane. If α � 0, β � 0, and γ � 0, p
tends to be on an intersection of planes. Those can be indicated
by the traceTr(M) and determinantDet(M), which is the sum
and the joint product of eigenvalues as calculated in (7) and (8),
respectively

Tr (M) = A+B + C = α+ β + γ (7)

Det (M) = A ·B · C + (A ·B) · (B · C) · (A · C)

+ (A ·B) · (B · C) · (A · C)

− (A · C) ·B · (A · C)−A · (B · C) · (B · C)

− (A ·B) · (A ·B) · C = α · β · γ. (8)

The detection of the intersection of only two planes seems a bit
complex, which requires that α ≈ β, and β � γ. Our detection
is based on the work of [29], which aims to find the intersection of
two planes for the curb extraction. The operator is shown in (9).
If the result E of p is large, p tends to be from the intersection of
two planes. It is worth noting that A2 ·B2 − (A ·B) · (A ·B)
is not zero, because the derivation process is in discrete form
and has been smoothed by a Gaussian filter. In the intersection
detection, the derivation of the density in (6) is based on a simple
detector calculated as the combination of (−1 0 1) in the x, y, z
direction as Sobel operator in the 2-D image. We do not need to
calculate eigenvalues of M, i.e., α, β, and γ, which makes the
intersection detection easy to implement

E =
A2 ·B2 − (A ·B) · (A ·B)

A+B
(A+B + C)

+
A2 · C2 − (A · C) · (A · C)

A+ C
(A+B + C)

+
B2 · C2 − (B · C) · (B · C)

B + C
(A+B + C) . (9)

To better understand the proposed gradient-based features, we
visualize the value of Tr(M), E, and Det(M) in Fig. 2. The
colored points in Fig. 2(b) show that points of stems or grounds
are easy to be inner a plane and detected by Tr(M). Points of
branch bifurcation regions are easy to be in the intersection of
planes and captured byE. Points from massive foliage region are

Fig. 2. Gradient-based features. (a) Input point clouds. (b) Calculation of
the proposed features. From the left to the right are the detection of no plane
intersection, two planes intersection (contours), and more planes intersection
(contours and corners).

distinguished by Det(M). The defined gradient-based features
can indicate the location of a point and show the topology of
neighbor planes, intersectant, or coplanar, which is promising to
supplement the existing geometric features for the classification.

B. Feature Selection, Classification, and Shape Fitting

For the feature selection, we can use either supervised or
unsupervised methods for optimizing the feature combination,
which will be discussed in experiments based on their perfor-
mance. In order to find a better feature combination, we first
conduct one of the feature selection methods on the extracted
features. Then, we select features according to the achieved
feature ranking. Empirically, we select the top 5 to 10 features for
the classification. For the point classification, this work chooses
SVM to detect wood points, because SVM is easy to perform
well in binary classification when feature selection has been
done.

In the step of shape fitting, we first use the RANSAC method to
detect poles from classification results. The axis of the cylinder
is the best line fitted by stem points, and the radius is the furthest
distance between the stem points and the axis line in a restricted
region. Second, we have to separate trunks from other poles
based on the points distribution, e.g., traffic signs and lamps. We
calculate the kurtosis [9] for each nonphotosynthetic component.
If the kurtosis of a nonphotosynthetic component falls in μk −
1.5δk and μk + 1.5δk, it will be regarded as a valid component.
μk and δk are, respectively, the mean and standard deviation of
the kurtosis of all extracted nonphotosynthetic components.

C. Branch and Leaf Separation

In order to achieve the full structure of trees, one is required to
separate wood and foliage points covered by crowns. Commonly
used methods for separating wood and foliage are based on the
local neighboring information of points, e.g., density and normal
vectors. In our work, we formulate the separation of wood points
as a global object tracking issue, which is a classical optimization
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problem in computer vision. There are two issues that should be
addressed in object tracking.

The first issue is the energy function formulation. We formu-
late the energy function into two terms. A data term to calculate
the local information and a smoothness term to collect global
information. The energy function is written as

T (P,L) = η ·D(P,L) + S(P,L) (10)

where P = {p1, p2, p3, . . ., pn} is the input point set, and L is
the label set of points, including “1” for wood points and “0” for
those foliage points. D(P,L) is the data term and S(P,L) is the
smoothness term. η is a coefficient to balance the data term and
smoothness term. The objective function is to find the optimal
configuration of L to achieve the minimization as

argmin
L

T (P,L). (11)

The data term is decided by assuming that each point can be a
candidate wood point. If the density φ of a point p is large than
a cut-off value t, we think p has more possibility to be a wood
point. The data term is used to constrain that more candidate
points are passed through by branches as

D(P,L) =
n∑
i

d (p, lp) (12)

where

d (p, lp) =

⎧⎨
⎩
0, φp > t and lp = 1
0, φp ≤ t and lp = 0
1, others

. (13)

It is worth noting that our data term can deal with occlusions
by assigning penalties to noncandidate points. Therefore, the
optimal path can retrieve those missing wood points by assigning
them a large penalty.

The smoothness term is based on the principal direction of
points. We assume that the branch is growing in one direction
locally. If the direction of the current points is different from the
previous points, there will be a penalty. The calculation of the
smoothness term is shown as

S(P,L) =
∑
{p,p′}

sin 〈p, p′〉 · σ (lp, lp′) (14)

where p′ and p are spatial neighbors. If the label of p is equal
to p′, there will be no penalty, otherwise, there will be a penalty
sin 〈p, p′〉 based on the principal direction of p and p′, which
ranges from 0 to π

2 . The calculation is written as if lp = l′p,
σ(lp, lp′) = 0, and if lp 	= l′p, σ(lp, lp′) = 1.

There is a trick in the calculation of the data and smoothness
term. If one calculates terms from the input data directly as
shown in Fig. 3(a), both the density and direction results are
easy to be incorrect. Because leaves are not static during the
data collection. Therefore, we cluster input points based on
a simple Euclidean distance clustering, and the result of the
clustering is shown in Fig. 3(b) with less noise and clear branches
visually. The direction of local points is based on clusters rather
than the neighboring points directly using RANSAC, as shown
in Fig. 3(c). Fig. 3(d) shows our target wood points and the
comparison of target points and the branch direction.

Fig. 3. Preprocessing step for the calculation of the data and smoothness
terms. (a) Input point clouds. (b) Euclidean distance clustering results. (c) Local
direction of points. (d) Target wood points (red).

Fig. 4. Dynamic programming for path optimization. (a) Graph construction.
(b) Tracking of the least-cost path.

The second issue of the tracking is the minimization of the
energy function globally. Intuitively, the number of paths is in
an exponential order with the increasing number of points in
branches. Therefore, we develop a new model for the optimiza-
tion of paths by the dynamic programming technique. In order
to define the order of points in the path, we organize the input
point clouds into voxels. To make our model easy to explain
and follow, we describe the proposed model in the 2-D space,
as shown in Fig. 4.
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In the constructed graph, each node means a voxel, and each
edge is weighted based on the data term and smoothness term.
We add a virtual starting node and ending node at the left and
right of the input data, respectively. A candidate path is supposed
to be a full path from the starting node to the ending node. For the
current node vi,j , where i ranges from 1 to X and j ranges from
1 to Y , and its previous node is v′i,′j′ . In our example, X = 22
and Y = 9. The stepsize of the node in the horizontal direction
is fixed as 1 from left to right; therefore, we have i′ = i− 1
and the length of the path is X in the horizontal direction. The
weights of a path are regarded as the path’s penalty. There is
no smoothness penalty from the starting node to other nodes
and no penalty from nodes to the ending node. This is because
the starting and ending nodes are virtual and have no principal
direction. In order to calculate the penalty in our graph, the
energy function in (10) is rewritten as

T ′ = η ·D′(V, L) + S ′(V, L)

= η ·
X∑
i=1

d (vi,j , li,j) +
∑
{v,v′}

sin
〈
vi,j , v

′
i,′j′

〉 · σ (li,j , li,′j′) .

(15)

We can find all paths from the starting node to the ending node,
for example, there are nine different paths from the starting node
to the next node as shown in Fig. 4(a); therefore, there are 922

different paths in the optimization space. To find the least-cost
path, we choose a dynamic programming technique to optimize
paths. Assume that we have found the optimal path from the
starting node to the current voxel v21,j as T ′

21,j , the optimal path
from v21,j to v22,1 is obtained in

T ′
22,1 = min

(
T ′
21,j + η · d (v22,1, l22,1)

+ sin
〈
v22,1, v

′
21,j

〉 · σ (l22,1, l21,j)
)
. (16)

In the calculation, we start from the starting node and we
calculate T ′

i,j by column. Each T ′
i,j stands for the optimal path

from the starting node to vi,j . As shown in Fig. 4(b), for each
node at the rightmost, there will be an optimal path cost from the
starting node to this node vX,j . The least-cost path of the con-
structed graph is decided by min(TX,j). In the implementation,
we calculate and store the optimal path from the starting node to
each node in the graph. By backtracking from the ending point,
we obtain the least-cost path from the starting node to the ending
node, as shown in Fig. 4(b). Although there are missing nodes
in the path, we can retrieve them by minimizing the energy path,
i.e., finding voxels with a large data term penalty while a small
smoothness term penalty. More generally, in the 3-D space, the
calculation is written as (17). In this equation, i ranges from 2
to X , j ranges from 1 to Y and k ranges from 1 to Z. X,Y, Z
means the number of nodes in x, y, and z direction, respectively.
The initialization of T1,j,k is d(vi,j,k, li,j,k), which means there
is no penalty caused by the smoothness term from the starting
node to others. The tracking of paths is similar to the discussion
in the case of a 2-D space

T ′
i,j,k = min

(
T ′
i−1,j,k + η · d (vi,j,k, li,j,k)

+ sin
〈
vi,j,k, v

′
i−1,j,k

〉 · σ (li,j,k, li−1,j,k)
)
. (17)

Fig. 5. Data description. (a) Image of the forest. (b) RIEGL VZ-400i scanner.
(c) Point clouds of scene #1 (21 685 097 points, 65 trees). (d) Point clouds of
scene #2 (21 759 017 points, 46 trees). (e) Point clouds of scene #3 (44 501 592
points, 40 trees).

IV. EXPERIMENTS AND EVALUATIONS

A. Study Area and Data Description

The site of focus is the Dongtai Forest located in the coastal
Jiangsu Province of China (120◦49′32.2′′E, 32◦52′20.6′′N).
Most of the Dongtai Forest (>85%) is planted with Dawn
redwood (Metasequoia glyptostroboides), Poplar (Populus del-
toides), and Ginkgo (Ginkgo biloba L.), in various developmen-
tal stages. As shown in Fig. 5, experiment data are collected
by the RIEGL VZ-400i. The scanner provides up to 1 200 000
points/s. The experimental data include three scenes as shown in
Fig. 5(c)–(e). Each scene covers 30 m× 30 m ground regions and
was scanned by 7 to 8 scans for each forest plot on 2020/08/19.
The following section focuses on fully evaluating the proposed
classification and separation accuracy.

B. Results of Feature Selection and Classification

Based on the aforementioned feature extraction, we list 23
features in Table I, including commonly used geometric features
based on eigenvalues (ID: 1-18) and our proposed topological
related features using the defined gradient (ID: 19-23).

The evaluation of the feature selection is by the average ratio
of correct classified points in four classes, namely 1) crowns,
2) stems, 3) bushes, and 4) ground points. The manually clas-
sified points of crowns, stems, bushes, and ground points are
considered as the ground truth and used as a reference to evalu-
ate the classification accuracy quantitatively. The classification
accuracy is calculated based on the ratio of points classified
correctly. We choose the scene #1 as the demonstration scene,
which contains 21 685 097 points. As shown in the first row of
Fig. 6, the ground truth of the scene #1 is demonstrated in four
pictures from (a) to (d), including crowns, stems, bushes, and
ground points. In the training step, we randomly choose 0.01%
points of the scene #1 as training points. The rest of the input
points are used for testing. Results of the geometric features (ID:
1-18) and complete features (ID: 1-23) are shown in the second
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TABLE I
COMPLETE FEATURES

Fig. 6. Classification of the scene #1. (a)–(d) Ground truth by manual. (e)–(h)
Classification results by the geometric features only. (i)–(l) Classification results
by the complete features.

and third rows of Fig. 6, respectively. As shown in Fig. 6(f)
and (j), stems are detected more accurately by adding the pro-
posed topological features. We achieve fewer misclassification
points and more complete trunks. The quantitative comparison
of the classification accuracy between the geometric features and
complete features is shown in Fig. 7. The improvement of the
classification accuracy of each class is 0.31%, 3.72%, 0.52%,
and 1.20%, respectively. Compared with the classification by
geometric features only, we achieve an average improvement of
1.52% in four classes.

To further evaluate our proposed features, we choose both
unsupervised [30], [31] and supervised methods [32], [33] for
the feature selection to show the weight of each feature in the
classification. In terms of the unsupervised feature selection,
LS [30] define Laplacian scores to evaluate the importance of
a feature by its power of locality preserving. Local Learning-
based Clustering Feature Selection (LLCFS) [31] focuses on

Fig. 7. Comparison of the classification accuracy quantitatively.

the relevance of each feature or kernel for the clustering. For
the supervised feature selection, ReliefF [32] is a feature weight
algorithm, which gives a higher weight to all features with a high
correlation with the classification. Infinite latent feature selec-
tion (ILFS) [33] aims to be robust to data by performing the rank-
ing step while considering all the possible subsets of features.
We choose the aforementioned four different feature selection
methods to evaluate the classification. For each feature selection
method, we sort all 23 features based on their importance. The
corresponding classification accuracy is demonstrated in Fig. 8.

In Fig. 8, we know that for each feature selection method, we
only need a part of the listed features to achieve good accuracy in
the classification. The achieved average classification accuracy
on four classes is 95.24% by using the complete features. We
set the cut-off threshold accuracy for obtaining the optimized
features as 95%. The selected features of each method are shown
in Table II. In this table, the “optimized features” demonstrates
the selected features. “Per.” shows the percentage of the selected
topological features in the optimized features. “Red.” illustrates
the reduction of the feature dimension. “Acc.” means the clas-
sification accuracy based on the selected features.

In our experiment, the best performance is achieved by Re-
liefF. The feature dimension is optimized from 23 to 11. Com-
pared with the choice of all features, the classification accuracy
is improved from 95.24 to 95.35%. From the feature selection
results, we find following three key points in the point cloud
classification.

1) More features do not mean higher accuracy in the classifi-
cation. As shown in Fig. 8, the accuracy is reduced slightly
when we add more features for the classification.

2) Combination of optimal features is various. This means
it is the combination of features rather than the sim-
ple integration of features that plays a key role in the
classification.

3) There is not too much accuracy difference between the
supervised and unsupervised feature selection methods in
point cloud classification.

We choose the feature selection result by ReliefF, including
3, 1, 17, 2, 22, 12, 21, 6, 4, 9, 23, for the generalization
ability discussion. Experimental scenes include the scene #1
(21 685 097 points, 65 trees), #2 (21 759 017 points, 46 trees),
and #3 (44 501 592 points, 40 trees). The training samples
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TABLE II
COMPARISON OF FEATURE SELECTION METHODS

TABLE III
GENERALIZATION ABILITY (%)

are obtained by choosing 0.01% points from the input scene
randomly. The classification accuracy is shown in Table III. The
first column “Scene Index” indicates the training scene. Each
row illustrates the classification accuracy on each testing data.
For example, the first row shows the classification accuracy on
the scene #1, scene #2, scene #3, scene #1+#2, scene #1+#3,
scene #2+#3, and scene #1+#2+#3, when the training data are
on the scene #1. The diagonal direction of Table III shows the
classification accuracy when the training and testing scenes are
the same, which is easy to be high.

The accuracy based on each training scene is illustrated in
Fig. 9. The horizontal axis is the training data. The vertical axis is
the average classification accuracy on all other scenes, including
the scene #1, scene #2, scene #3, scene #1+#2, scene #1+#3,
scene #2+#3, and scene #1+#2+#3. To show our superiority, we
demonstrate the classification accuracy based on the complete
features and geometric features in Fig. 9. The classification
accuracy based on the selected optimal features is close to
the complete features and higher than the geometric features
in most cases. Know that there are only 11 elements in our
optimal features, which is 53% of the complete features. The
classification results of the scenes #1, #2, and #3 are shown in
Fig. 10 by using 0.01% points from scene #1 as the training
samples.

In terms of the stem-based evaluation, a stem is regarded as
classified correctly if more than 80% points of this stem are
assigned with the correct label. For the chosen three scenes, we
detect all stems (65+46+40) from the input TLS point clouds,
which is important to the following branch tracking for wood
and foliage separation.

C. Results of Separation

Our quantitative separation evaluation requires the calculation
of true positive (TP), false negative (FN), and false positive
(FP). TP means that wood points are detected correctly from
the input. FN means that wood points are wrongly detected as
foliage points. FP means that foliage points are wrongly detected
as wood points. Similarly, wood points separated manually are
considered as the ground truth and used as a reference to evaluate

TABLE IV
SEPARATION ACCURACY ANALYSIS

the separation quantitatively. To evaluate extraction results, we
calculate the correctness r, completeness p, and F1 score f as

r =
TP

TP + FP
, p =

TP

TP + FN
, f = 2 · r · p

r + p
. (18)

Our separation results are shown in Fig. 11. Fig. 11(a)–(c)
shows example results from the scenes #1, #2, and #3, respec-
tively. In each figure, the first column shows input tree point
clouds and the achieved stem points (brown) from the classifica-
tion. The second column shows the ground truth of wood points
separated manually. The third column shows the separation
results based on the proposed least-cost path model by using
the data term only. The last column demonstrates the separation
results based on both the data term and the smoothness term. As
shown in the ablation analysis, the smoothness term based on the
tracking information of branches helps separate lots of foliage
from branches. There are still misclassified wood points in our
results as shown in the last subfigure in Fig. 11(c). Because the
density of points from foliage regions is close to trunks in this
case. Besides, if the weather is windy, branches keep swaying,
our accuracy will be reduced unavoidably.

In order to show the quantitative accuracy improvement, we
choose four methods of wood and foliage separation for the
comparison, including [15], [34]–[36]. In our experiment, we
have 151 Ginkgo trees scanned by RIEGL VZ-400. Segmenta-
tion performances are shown in Table IV. The second column
“Target” shows the evaluated region, and “Wood” means all
wood points from trees. Our evaluation is based on the correctly
segmented wood points, i.e., point-based. The last three columns
show the accuracy of completeness, correctness, and F1 score,
respectively. Point-based accuracy shows that we have achieved
the best balance of segmentation completeness and correctness.

It is worth noting that the chosen compared methods are not
open source and it is difficult to reimplement them optimally
due to the parameter setting and programming skills. We figure
out those algorithms on MATLAB R2019a based on their pub-
lished algorithm description. According to the work in [34], we
organize point clouds in voxels to generate clusters through the
point density algorithm DBSCAN (i.e., Density-Based Spatial
Clustering of Applications with Noise), and then, we merge
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Fig. 8. Classification accuracy analysis based on the importance of each
feature. (a) Laplacian score feature selection. (b) LLCFS. (c) Relief-F feature
selection. (d) ILFS.

Fig. 9. Generalization ability study.

Fig. 10. Classification performance on the scene #1, #2, and #3.

Fig. 11. Separation results of wood points from individual trees. (a) Scene #1.
(b) Scene #2. (c) Scene #3.

neighboring clusters containing fewer points (<100). An exam-
ple segmentation result [34] is shown in Fig. 12(b), which shows
that it is not robust to dense foliage regions. According to [35],
we extract eigenvalue features from points and use the machine
learning model based on the random forest (RF) algorithm (200
trees) to classify points. An example segmentation result [35]
is shown in Fig. 12 (c), which misses wood points covered by
crowns. According to the work in [15], we use the normal change
rate (� 0.1) to thin branches and, then, calculate geometric
features for filtering stem points using height-to-width ratio. An
example segmentation result [15] is shown in Fig. 12(d), which
works well in vertically standing stems. According to the work in
[36], we first use K-means to classify point clouds into different
regions and, then, perform the RANSAC algorithm to obtain
cylindrical segments as wood points. An example segmentation
result [36] is shown in Fig. 12(e), which misclassifies foliage
points from cylinder volumes as wood points. The ground truth
is shown in Fig. 12(a), and our result is shown in Fig. 12(f)
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Fig. 12. Comparison of segmentation results. (a) Ground truth. (b) Result from [34]. (c) Results from [35]. (d) Result from [15]. (e) Result from [36]. (f) Our
result.

achieving the most of wood points, including points from the
second branching order of trees.

V. DISCUSSION

In terms of the complexity, we mainly discuss the time com-
plexity for the first and last steps in the proposed framework.
In the feature extraction, we need to do the voxelization for the
gradient calculation by splitting the input data into 1 × 1 × 1 cm
cubes and assign points to their spatial closest cube centers at
the complexity of O(N · c), where c is the number of cubes and
N is the number of points. Second, we are required to calculate
Tr(M), Det(M), and E for each point at the complexity of
O(N). In the branch and leaf separation, the dynamic program-
ming, including the backtracking process for the refinement,
is at the complexity of O(X · Y · Z), which depends on the
size of input data. Our complexity is less than O(N3), which
is the common complexity in other methods. Experiments were
done on a Windows 10 Enterprise 64-b, Intel Core i7-6900 k,
3.20 GHz processor with 64 GB of RAM and computations were
carried on MATLAB R2019a. For the scene #1, the calculation of
topological features is finished within 1.2 s. The feature selection
(1% points for the training) based on ReliefF is finished within
178.9 s. The classification based on SVM is finished within 82.7
and 4.7 s in terms of the training and testing process, respectively.
The shape fitting (90% confidence in RANSAC), including the
kurtosis calculation, is finished within 61.5 s. The branch and
leaf separation is finished within 116.63 s.

In the parameter setting, the size of voxels is 1× 1× 1 cm, and
the step size for the gradient calculation isΔx = Δy = Δz = 1.
The density variance σ is set as 1. Theoretically, the parameter
setting depends on the point density. However, since the plot
size and position have been chosen to split the scene equally,
and the distance between trees and the scanner is limited to 5 m,
we fix the voxel size as 1 × 1 × 1 cm for different scenes in the
separation. In the calculation, the radius of neighbor points is set

Fig. 13. Sensitivity analysis of the proposed least-cost path model.

at 0.2 m. The number of neighbors for the Euclidean distance
clustering is 30 and the minimum distance between two clusters
is 0.01 m. Two key parameters in the least-cost path model are
t and η, which are set as 500 and 0.2, respectively.

For the purpose of the parameter sensitivity analysis in the
proposed least-cost path model, we range all parameters from
−30 to 30% with respect to the suggested values. The analysis
is conducted by floating one parameter and fixing the rest of the
parameters. The accuracy of the aforementioned scenes is shown
in Fig. 13 using different parameters. Fig. 13 shows that we can
achieve a highF1 score at different parameter settings according
to the suggested value. The mean F1 score μf of different t and
η is above 0.90 in the parameter sensitivity analysis.

In terms of extensibility, we test the proposed method on
different tree species collected by MLS and HLS. In the data
of MLS, points are from the open dataset located in Paris,
France [37]. In order to contain more nonphotosynthetic compo-
nents, we limit the distance between the road and trees to 20 m.
The input data describe an urban forest scene containing a mix
of trees. In the data of HLS, points are collected at Nanjing,
China with GeoSLAM Horizon system, which collects points
at the rate of 300 000 points/s. Separation results are shown in
Fig. 14, and the proposed method separates wood and foliage
effectively in different scanner points and tree species.
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Fig. 14. Separation results of wood points from various trees and scanners. (a)
Results of urban forest collected by MLS. (b) Results of street trees collected
by HLS.

VI. CONCLUSION

This article introduces a method of foliage and wood separa-
tion from ground point clouds, which shows that the terrestrial
laser scanning technique helps capture the 3-D spatial structure
of trees effectively. Our achieved classification results can bene-
fit the retrieval of biomass information. We have addressed three
key issues in the point cloud separation. First, in the pointwise
classification, although the most commonly used features based
on the geometric information have provided the linearity and pla-
narity of objects, the topological information is missing, which
has been supplemented in this study. Second, the existing point
cloud features are redundant, which have been optimized at less
classification accuracy loss in the feature selection. Third, the
proposed least-cost path model improves the extraction of wood
points by tracking the branch information globally rather than
using the local density information only. Experimental results
show that we have achieved completeness, correctness, and F1

score of 91.25%, 90.34%, and 0.91, respectively, which means a
good balance between completeness and correctness in the wood
point separation. Besides, we achieve higher completeness than
the existing methods with the help of the proposed least-cost
path model to connect branches, which shows promising to the
phenotyping study in terms of the growing structure.

Although we have achieved high performance in experimental
scenes, the proposed framework has two main limitations to be
tackled in future work. First one is not able to segment large
discontinued branches correctly, which will be solved by an
adaptive cylinder fitting method in a local coordinate system.
Second lies in the nonautomatic branch growing process, which
will be addressed by adding prior knowledge for the starting and
ending points initialization.
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