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A new method for shoreline extraction from airborne LiDAR
point clouds
Sheng Xu , Ning Ye and Shanshan Xu

College of Information Science and Technology, Nanjing Forestry University, Nanjing, China

ABSTRACT
This work proposes a method for the extraction of shorelines from
airborne LiDAR (light detection and ranging) point clouds. In the
beginning, water bodies are removed based on the flatness clue.
Then, boundaries of lands are extracted by using a new minimum-
cost boundary model. Finally, false boundaries caused by man-
made objects and vegetations are removed in the refinement step,
and true boundaries are regarded as shorelines. The main contri-
bution is that the cost of boundaries is calculated through an
energy function and minimized by the proposed minimum-cost
model globally. Evaluation on five experimental scenes shows that
the proposed method achieves the completeness of 92.5% and
correctness of 90.7%, which are promising results in the shoreline
extraction.
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1. Introduction

Shoreline is the line of contact between lands and water bodies (Boak and Turner 2005),
which plays an important role in the coastline management and engineering design
(Feng et al. 2012; Choung 2009).

Nowadays, many approaches have been proposed for the shoreline extraction.
Niedermeier, Romaneessen, and Lehner (2000) extract the shoreline information from
synthetic aperture radar (SAR) images using a four-step method, including detecting all
edges above a threshold, determining the boundary area between lands and water
bodies, selecting local edges in the coastal area and joining the refined edge segments.
Their accuracy is claimed to be sufficient to monitor and update the topography of large
active areas. Di et al. (2003) investigate an approach for the shoreline extraction from
high resolution satellite imageries using three steps: (1) segment homogeneous regions
from images; (2) generate an initial shoreline based on their identified water body and
(3) obtain final shorelines by a local refinement method. The work is capable of extract-
ing shorelines from high-resolution satellite imageries with little human iteration.

Recently, LiDAR (light detection and ranging) point clouds are becoming a significant
technique in 3D information extraction, and LiDAR data provide a new solution for the
shoreline extraction. Liu, Sherman, and Gu (2007) segment a LiDAR digital elevation
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model (DEM) into a binary image, and then they use a chain of image processing
algorithms to extract shorelines from airborne LiDAR data.

They derive spatially detailed shorelines from point clouds with minimal human
intervention. Lee, Wu, and Li (2010) investigate shoreline extraction using the integra-
tion of LiDAR data and satellite imageries. They classify LiDAR data into water body
points and land points by the means-shift algorithm, and trace boundaries between
water bodies and lands to refine shorelines.

Although the above-mentioned methods achieve the shoreline extraction effec-
tively, they conduct the extraction process in 2D space, which may lose 3D informa-
tion and degrade the extraction accuracy. This work aims to propose an approach to
extract shorelines from airborne LiDAR point clouds in 3D space without any imagery
information and human interaction. In the beginning, water bodies are removed
based on the flatness clue and disjointed lands are clustered into different groups.
Then, boundaries of lands are optimized by the proposed minimum-cost model.
Finally, false boundaries are eliminated from results and true boundaries are regarded
as shorelines.

2. Water body removal

In most cases, the beam return from water regions is very minimal, because the laser
energy is absorbed by water. To identify LiDAR returns associated with water bodies, we
cluster points based on Euclidean distance. If the number of points in a cluster is less
than a threshold np, this cluster will be removed. In the case of muddy and shallow
water bodies, one can collect lots of beam returns. The water body detection is based on
the work of Xu and Xu (2018). They provide a water point removal method based on the
combination of the plane fitting and features filtering. The detection is based on the
assumption that water bodies are presented as large horizontal planes in point clouds.
False water body points are removed based on the elevation and density information. If
the elevation of a point above the nearest extracted plane is larger than a threshold Te, it
will be marked as a non-water point. If the density of points from the extracted plane is
larger than a threshold TD, this region will be marked as the non-water body. Values of
the above-mentioned np, Te and TD are set by users.

The obtained smallest water body depends on the value of np and its density. In our
work, water bodies larger than 500 m � 500 m can be extracted effectively. After
removing extracted water bodies, we use Euclidean clustering method (Rusu 2010) to
cluster disjointed lands into different groups. The following sections will show how to
obtain accurate boundaries of lands optimally.

3. Boundary optimization

There are three steps in the proposed boundary extraction. First, a testing method is
used to detect candidate boundary points from input data. Second, the calculation of
the boundary cost will be formulated by an energy function. Third, a new minimum-cost
boundary model is used to optimize boundaries based on their cost.

In a convex hull, a point p fails to be a boundary point of a convex set S, if it lies in
a triangle whose vertices are in S (Wang and Shan 2009). Therefore, boundary points can
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be achieved by removing non-boundary points. The idea of the testing algorithm is as
follows.

In the initialization, all points are regarded as unlabelled points. As shown in Figure 1
(a), if a point p is an unlabelled point, pick up its k-nearest neighbourhood points and
construct a convex hull of (p, pi), i.e., the hull consists of a set of points labelled pi,
i ¼ 1; 2; :::; k. Then, label all points inside this convex hull as non-boundary points, and
repeat the testing until no non-boundary points can be found. Finally, all unlabelled
points are regarded as candidate boundary points. Figure 1(b) shows an example of the
testing algorithm on a simple point cloud set.

There are three things worth noting. First, there may be missing points in the
extraction of candidate points. This depends on the number of neighbouring points k.
A small k incurs more complete boundary points but requires more time in the
candidate point extraction. Second, if a candidate point is far from all other candidate
points, i.e., larger than a user-defined threshold Td, this candidate point is regarded as an
error one and will be removed. Third, due to the fact that point clouds are uneven and
unorganized, it is difficult to extract all boundary points of lands, and candidate points
can generate different boundaries. Assume that there are five candidate boundary

Figure 1. Candidate boundary point extraction. (a) Illustration of the testing algorithm. (b) Extracted
candidate boundary points.

Figure 2. Cost calculation of different boundaries. (a) Different boundaries generated by candidate
points (index: 1, 2, 3, 4, 5). (b) Weights of connections in the boundary optimization.
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points as shown in the left corner of Figure 2(a), one can generate different boundaries
as shown in the rest of Figure 2(a).

From Ockham’s razor (Jefferys and Berger 1992): the law of parsimony, a simple
boundary may be preferable in describing an object. To evaluate a boundary, we define
the boundary value β as

β ¼
Xn
i¼1

DðBiÞ þ
X

Bi;Bjf g2N
λ� cosð Bi; Bj

� �
2

Þ
����

����
0
B@

1
CA; (1)

where n means the number of connections in the boundary, λ is a weight coefficient,
DðBiÞ is the length of the connection Bi, N means the set of adjacent connections, and
Bi; Bj
� �

is the angle between two connections. In the boundary optimization, boundary
points are expected to be close to each other, i.e., DðBiÞ is small, and the angle of

neighbouring connections is desired to be large, i.e., cosð Bi;Bjh i
2 Þ

����
���� is close to 0. For

example, Figure 2(e) displays weights of all connections and the boundary value is
calculated as

β ¼ DðB1Þ þ DðB2Þ þ DðB3Þ þ DðB4Þ þ DðB5Þ þ λ� ð cos B1;B2h i
2

��� ���
þ cos B1;B4h i

2 þj j cos B4;B3h i
2

��� ���
þ cos B3;B5h i

2 þj j cos B2;B5h i
2

��� ���Þ:
(2)

To obtain the boundary with the minimal value β, we propose a minimum-cost model to
optimize Equation (1).

Before proceeding the proposedmodel, we need to define the node of a boundarymodel,
which is the combination of any three points as {LMR}, i.e., the left, middle and right candidate
point. Take Figure 2(a) as an example, nodes are formulated in the graph as shown in Figure 3.
Each candidate point can be assigned as a middle point, therefore, nodes are in five columns.
The node {I JK} is equal to the node {K JI}, where I,J,K are the index of candidate points,
therefore, nodes are in five rows. Each black circle means a candidate point, and the
combination of three circles means a node. Each blue line means a connection between
nodes. If we add Source and Sink nodes in the formulated graph, each path from Source to
Sink indicates a boundary for input candidate points. For example, the right corner of Figure 2
(a) is Source-{314}-{142}-{425}-{253}-{531}-Sink. Our task is to choose the minimum-cost path
as the optimal boundary.

Figure 3. Graph used in the boundary optimization.
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We weight each node {LMR} in Figure 3 as

cost L;M; Rð Þ ¼ dis L;Mð Þ þ dis M; Rð Þ
2

þ λ� cos
θLMR

2

� �����
����; (3)

where dis(L,M) is Euclidean distances of two candidate points and θLMR is the angle
between the connection ‘LM’ and ‘MR’. We have

X
I;J;Kf g2P

dis I; Jð Þ þ dis J; Kð Þ
2

¼
X
i

DðBiÞ;

X
I;J;Kf g2P

cos
θLMR

2

� �����
���� ¼

X
Bi;Bjf g2N

cos
Bi; Bj
� �

2

����
����; (4)

where P is the node set in the graph. Therefore, the cost of a path from Source to Sink is
equal to the boundary value in Equation (1). The path with the minimum-cost will be
chosen as the optimal boundary of input candidate points.

The formulated optimization can be regarded as the shortest path problem, which
can be efficiently solved by the dynamic programming approach (Eppstein 1998). The
idea is to break the complex optimization into simpler sub-problems. Assume that we
have found the optimal path from Source to each node. When adding a new node, the
optimal path from Source to this new node should contain the optimal path from
Source to its prior node. In Figure 3, red lines mean the optimal path from the prior
node and the current node. The red arrow shows the obtained minimum-cost path
backtracked from Sink to Source. The refinement step is to remove false boundaries
caused by man-made objects and vegetations. If the Euclidean distance between
a boundary point and the nearest water body is larger than a user-defined threshold
Tb, this point will be removed from boundaries.

The shoreline extraction is not a well-addressed issue, because of many complicated
factors, e.g., wave, erosion and sediment. One advantage of the proposed model is that
the boundary of the shoreline can be modified by adding constraints in the energy
function. We can balance terms by tuning coefficients or adding new terms based on
the prior knowledge for different cases. For example, we can add the curvature informa-
tion to smooth the boundary in erosion regions. Another advantage is that we extract
shorelines in 3D space without the projection process, which may lose 3D geometric
information.

4. Results and evaluation

This section shows performances of the proposed method on five experimental scenes
located in US, including Estuary (Oregon), Wax Lake (New Orleans), Bowman Lake
(California), Susquehanna River (Pennsylvania) and Canyon Stream (Washington). The
2D images of experimental scenes are shown in Figure 4. Description of input datasets is
shown in Table 1.

Extraction results from ALS point clouds are visualized in Figure 5. The first
experimental scene is Estuary. The challenge in the sea estuary is that boundaries
of offshore and coastal wetlands are difficult to be marked from point clouds. As
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Figure 4. 2D images of experimental scenes from Google map. Input ALS point clouds for experi-
ments are collected from the corresponding shaded areas in each scene. (a) Estuary. (b) Wax lake. (c)
Bowman lake. (d) Susquehanna river. (e) Canyon stream.

Table 1. Description of experimental scenes.

Dataset
No. points
(� 106)

Area
(km)

Density
(points/m2) Survery Date Location

Estuary 182 16� 12 10.30 March 2007 Oregon, US (44°25ʹN, 124°04ʹW)
Wax Lake 232 5� 6 14.27 February 2013 New Orleans, US (29°31ʹN, 91°26ʹW)
Bowman Lake 14 5� 3 8.93 June 2014 California, US (39°27ʹN, 120°38ʹW)
Susquehanna River 24 3� 3 1.37 January 2005 Pennsylvania, US (39°49ʹN, 76°19ʹW)
Canyon Stream 54 6� 5 9.63 October 2006 Washington, US (48°00ʹN, 120°36ʹW)

Figure 5. Visualization of shoreline extraction results on ALS point clouds. (a) Estuary. (b) Wax Lake.
(c) Bowman Lake. (d) Susquehanna River. (e) Canyon Stream.
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shown in Figure 5(a), the proposed method succeeds in obtaining the boundary of this
estuary accurately, including the offshore area and themain tributary of the sea. The second
experimental scene is Wax Lake (https://doi.org/10.5069/G9SF2T41). Although there is less
elevation difference (around 1.2 m), we extract thin tributaries effectively as shown in Figure
5(b). The third experimental scene is Bowman Lake (https://doi.org/10.5069/G9V122Q1).
This scene shows that the proposed method works well on the scene with a large elevation
difference (over 300m) and can achieve boundaries of small islands in themiddle of the lake
as shown in Figure 5(c). The fourth experimental scene is Susquehanna River (https://doi.
org/10.5069/G9RV0KMG). This scene contains a large number of sandbars, which are
detected by the proposed method successfully as shown in Figure 5(d). The last experi-
mental scene is Canyon Stream (https://doi.org/10.5069/G9JM27JX). This one is the most
difficult scene. It is even hardly to extract the ground-truth manually. Our performance on
the last scene is shown in Figure 5(e).

The evaluation is based on the point level. There are three status of extraction results
for a point, namely true positive (TP), false negative (FN) and false positive (FP). TP
means the distance between the detected boundary point and the true boundary in the
reference is less than 0.5 m. FN represents the distance between the detected non-
boundary point and the true boundary in the reference is less than 0.5 m. FP represents
the distance between the detected boundary point and the true boundary in the
reference is larger than 1 m. Currently, we do not have survey data measured by humans
for the evaluation. The reference data used in the evaluation is manually obtained
through the point cloud visualization tool, e.g., CloudCompare (www.danielgm.net/cc/)
in our work. We manually segment shorelines as the ground-truth, and then accumulate
the number of TP, FN and FP points to calculate completeness and correctness in
Equation (5) for the point-based evaluation.

Completeness ¼ TPj j
TP þj jFNj j ;Correctness ¼

TPj j
TP þj jFPj j ; (5)

where TPj j, FNj j and FPj j are the number of TP points, FN points and FP points, respectively.
The completeness measures the probability of ground-truth boundary points that can be
extracted, and correctness measures the probability of extracted points that belong to
ground-truth boundaries. The average completeness is over 92.5% and correctness is over
90.7% through five experimental scenes.

For the comparison, Niedermeier, Romaneessen, and Lehner (2000), Liu, Sherman,
and Gu (2007) and Lee, Wu, and Li (2010) did not conduct the point-based evaluation.
Therefore, we can only show the comparison of accuracy level in Table 2, e.g., 10-meter
or 1-meter level, obtained by different methods in their experimental scenes. The
column ‘Data’ shows the input data, i.e., satellite images or ALS point clouds.
The column ‘Resolution’ shows average Euclidean distances between pixels or points.
The column ‘Level’ shows the accuracy level and the last column ‘No. scenes’ shows the
number of experimental scenes. Image processing methods are proposed for 2D space
and cannot be used in unorganized ALS point clouds directly. Their accuracy level on
images is over 10-meter level. Besides, image processing methods cannot address
occlusion from bridges and trees. As shown in Table 2, the proposed method extracts
shorelines in a high accuracy level, which indicates that airborne LiDAR data are very
promising information in the shoreline extraction.
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5. Discussion

One shortcoming of the proposed method is the parameter setting in the processing as
indicated in Table 3.

In the water body removal, np is the minimum number of points in the clustering. We
remove clusters of fewer points as water bodies. A large np will remove more plane
regions and lose small water bodies. Te is the minimum distance between a non-water
point and water bodies, and a large value will lose more non-water points. TD is the
minimum density of the non-water body. In ALS point clouds, points from water bodies
are more sparse than lands, because of the quite different absorption rate. A large
density threshold will remove false water bodies.

In the boundary optimization, k is the number of neighbouring points. A large value
will obtain less candidate boundary points and a small value will decrease the accuracy
of the candidate point extraction, because the convex hull requires points in the
formulation for the testing process. Td is the minimum distance between candidate
points, and a large value will incur error candidate points. λ is the coefficient in the
boundary value calculation. A small λ works well when there are plenty of candidate
boundary points. A large λ is suggested when there are fewer boundary points and
the boundary is desired to be smooth. Tb is the maximum distance between the
boundary point and the nearest water body. A large value will bring error points in
boundaries, and a small value will fail in the shoreline extraction when water bodies with
high elevation difference.

We test all parameters in the range in Table 3 and use the suggested value to achieve
the above-mentioned promising results. The proposed method is tested on different
water bodies with different airborne laser sensors. Results of the shoreline extraction in
the case of many mouths are shown in Figure 5(b). In this case, we assign each
candidate point with an index and calculate the distance between candidate points to
obtain dis(L,M) and dis(M,R). Results of the shoreline extraction in the case of different
point distribution are shown in Figure 5(d). In this case, points around islands are dense
and points in the middle of water bodies are sparse.

Table 2. Comparison of different shoreline extraction methods.
Methods Data Resolution Level (m) No. scenes

Niedermeier, Romaneessen, and Lehner (2000) Image 12.5 m/pixel 31.0 1
Di et al. (2003) Image 4.0 m/pixel 8.5 4
Liu, Sherman, and Gu (2007) Point clouds 1.0 m/point 4.5 1
Lee, Wu, and Li (2010) Point clouds 2.0 m/point 1.5 4
Proposed Point clouds 1.0 m/point 1.0 5

Table 3. Setting of parameters in the proposed method.
Section Parameter Range Suggested Value Unit

Water body removal np 500–10,000 500 point
Te 0.5–5 2 m
TD 0.1–0.5 0.3 points/m2

Boundary optimization k 20–100 50 point
Td 0.5–3 2 m
λ 1–10 3 N/A
Tb 0.1–1 0.5 m
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In terms of the execution time, the average cost time of the boundary optimization
across sites (a)-(e) is 81.30 s. Experiments were done on a Windows 10 Home 64-bit, Intel
Core i5-7200U 2.5 GHz processor with 16 GB of RAM and computations were carried on
Matlab R2018a.

6. Conclusion

This paper proposes a method for the shoreline extraction from airborne LiDAR data,
including (1) removing water bodies and segmenting disjoint land areas, (2) using
a minimum-cost boundary model to optimally extract boundaries of lands and (3) refining
boundaries as shorelines. The cost of boundaries is formulated by an energy function and
minimized by the dynamic programming approach. The proposed extraction only uses
airborne LiDAR point clouds and is conducted without any human interaction. Experiments
on five typical scenes show that the achieved completeness is over 92.5% and correctness
is over 90.7% which is competitive with other existing methods.
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