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Classification of 3D Point Clouds By A New
Augmentation Convolutional Neural Network
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Abstract—Nowadays, the classification of point clouds has be-
come a fundamental problem in 3D information study. Different
from the deep learning process of natural images, 3D point clouds
are massive and unorganized, which can be difficultly captured
features by the convolution process directly. This letter proposes
a new augmentation convolutional neural network (ACNN) to
classify point clouds by adding a key augmentation layer before
the classical sampling and convolution structure. Input data will
be augmented before each sampling layer, which brings abundant
learning information to help the network capture more local
structures. In order to make the augmentation more effective,
we formulate parameters of augmentation layers learnable in
the learning process according to the loss function. The proposed
augmentation is based on automatically tuning the magnitude of
the smoothness, which plays a significant role in point cloud
processing and provides local features, e.g. edges, contours,
and edges. Results show that we have achieved the overall
accuracy of 92.52% and 89.11% in the object classification
on ModelNet10 and ModelNet40, respectively, which shows our
superiority over other methods. Besides, the ACNN achieves an
average miscalculation error of 0.28 and cross-entropy loss of
0.48 in the classification of laser scanning point clouds, which
shows high robustness to noise and density in the outdoor scene
classification.

Index Terms—Deep learning, CNNs, classification, point
clouds, augmentation layer

I. INTRODUCTION

A fundamental work in the 3D point cloud study is the
object classification, which plays an important role in the
geometric analysis [1], vegetation delineation [2] and segmen-
tation [3]. Object classification is the process of assigning a
unique label to points from one kind of instance. In general, the
classification methods are either unsupervised or supervised.
The former focuses on the feature proximity [4], which
minimizes the feature distance between objects with the same
label. The latter tries to fit a function for splitting objects with
different labels, which is achieved by a learning process. Since
the 3D feature calculation in point clouds is still a challenging
task, this work puts efforts into the machine learning methods
to classify objects. Different from the classical classification
approaches based on the handcraft features [5], we focus on
deep learning models.

Commonly used deep learning methods related to the point
cloud classification follow a sampling and convolution process,
which are present as convolutional neural networks (CNNs).
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In the method of [6], the authors propose a deep hierarchical
feature learning method to capture local patterns, and improve
their generalization to various point densities by a sampling
strategy. However, the formulation of multi-scale features
arises much calculation in local regions. In the method of
[7], they present a VoxelNet to recognize objects using a 3D
bounding box. They formulate a new encoding layer to obtain
features from local voxels, and then integrate local features to
obtain 3D shape information. Although the VoxelNet works
well in binary classification, it may fail in multiply labels clas-
sification when input data are limited and sparse. In the method
of [8], the authors develop a permutation invariant convolution
to improve training speed in CNNs at a less complex network
architecture. They define representative features and resolve
the point order ambiguity to help CNNs work with larger
receptive fields. Although their algorithm works well in both
indoor and outdoor scenes, it is not easy to formulate a robust
operator for different environments. In the method of [9], the
authors propose 3D CNNs to analyze sparse point clouds.
Although their algorithm implements the convolution process
directly on the collection of shallow octrees, a conditional
random field model is necessary to be utilized for learning
global features.

Since point clouds are unorganized and massive, it is diffi-
cult to capture enough features directly from 3D point clouds.
Although the existing CNNs have achieved promising results
in the point cloud classification, there are three remaining
issues. First, the learning task in 3D point clouds requires
a large size of memory and high computation. Second, point
clouds are uneven which makes the feature extraction difficult.
Third, the learning samples for the training process are usually
limited.

Different from the existing CNNs for the point classifica-
tion, we develop an augmentation layer to improve our gener-
alization in the learning process, which helps neural networks
capture point cloud features in 2D projection space abundantly
and accurately. It is worth noting that the projected points can
not be directly processed in CNNs as other natural images do.
The difference between the point image and natural image lies
in that a natural image is present by topologically organized
pixels. However, a point image is created by the coordinate
projection, whose elements are still unorganized and massive.
Hence, our contributions include 1) the formulation of a new
augmentation layer for CNNs to capture local features of input
data, and 2) the establishment of a learnable Gaussian filtering
process for the classification of massive and uneven points’
images, which helps us reduce the memory and computation.
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Fig. 1. Structure of the augmentation convolutional neural network.

II. THE AUGMENTATION CONVOLUTIONAL NEURAL
NETWORK

This section aims to develop a new augmentation layer for
the classical convolutional neural networks. Before we present
the augmentation convolutional neural network (ACNN), it
is necessary to discuss the data preprocessing for the input
layer. Our input data are point clouds, i.e. a set of points with
the coordinate (x, y, z), which are different from 2D images
at three aspects. 1) There is only coordinate information
in raw point clouds, which makes the convolution process
difficult to understand. (2) The input samples are limited and
insufficient for the 3D training process because the split of
3D point clouds is very complicated and time-consuming.
(3) Input point clouds are uneven and unorganized, which
are quite different from pixels. In the preprocessing, we first
project point clouds into 2D space as shown in Fig.1. Then,
we use the zero-padding strategy to make input data as a
square image at a fixed size. After those steps, we obtain
the normalized data as input for the subsequent augmentation-
sampling-convolution modular and full connection layer. The
output layer demonstrates the results of the classification.

A. Network formulation

The augmentation layer aims to capture features from input
data at different views, which releases dimension loss and the
sample limitation. Furthermore, we smooth input 2D images
in this layer to achieve features from scattering points. We
develop the augmentation layer before the sampling layer as
shown in Fig.2. The input data of augmentation layers are the
projection images of 3D point clouds at different views, e.g.
along the axis, and the output data of those layers are different
smoothed images.

Denote the augmentation layer as Ai, the sampling layer
as Si, and the convolution layer as Ci, where i represents
the index of layers as demonstrated in Fig.2. To describe the
network structure, we use Ii(x, y,m) to display the size of
data in each layer, where x and y are the size of each feature
map and m shows the number of kernels in the current layer.
We use ai and ci to show the size of kernels in the current
augmentation layer and convolutional layer, respectively. The
coefficient ri shows the sampling ratio in the current sampling
layer. The number of kernels in Ai depends on the number of
kernels in its prior layer and the size of its kernel decided
by the subsequent Si+1 and Ci+2, which means that ai is
(ri+1 · ci+2).

Input images are smoothed in the augmentation layer, and
then data will be put forward to sampling and convolution
layers. We use an example to demonstrate the structure of the
ACNN and its forward propagation in the learning process. Let

Fig. 2. Network structure of the augmentation-sampling-convolution modular.

the input image as I0(64, 64, 1). Based on the r2 and c3 set by
the user, the kernel in A1 is a1 = 5. For the boundary regions
we choose the zero-padding strategy, hence, there is no size
reduction in the augmentation layer, i.e. we have I1(64, 64, 1).
The size of feature maps in S2 and C3 depends on r2 and
c3, which is obtained by the basic propagation rules in CNNs.
Repeat our modular to generate layers from A4 to C9 as shown
in Fig.2. Then a full connection layer is chosen to capture
global features from C9 to obtain F10. Finally, the output layer
I11(1, 1, N) shows results, where N stands for the number of
output nodes.

B. Parameters update

The proposed ACNN has three learnable parameters to be
updated in the learning process, namely the weight and bias in
CNN models and a new augmentation U. U aims to augment
input data by using Gaussian function to smooth points for
achieving neighbor information. The propagation function in
the augmentation layer is

Y =
1

2
(I− U)

2 · X + G ∗ X, U = {u1, u2, ..., uk, ...}, (1)

where X and Y are input data and output data of this layer,
respectively. U is a vector to describe the augmentation for
each feature map, which is similar to the bias. Each map shares
with only one uk. I is a vector at the same dimension with U.
’∗’ shows the convolution process between G and X, where
the element (i, j) of the matrix G is defined as

Gi,j = exp

(
− (xi − x0)2 + (yi − y0)2

2σ2

)
· λi,j , (2)

λi,j =

{
uk , i 6= j;
1 , i = j.

(3)

Coefficients i and j depend on the kernel size of ai and range
from io−ai to io+ai and jo−ai to jo+ai, respectively, where
io and jo are the coordinate of the current neuron. The function
of the augmentation layer can be regarded as a special multi-
scale Gaussian filter. Rather than tuning the value of sigma
in Eq.(1), we optimize the intensity value of neighbors in the
learning processing, which is robust to the density changing.
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Fig. 3. Parameter propagation of U = {u1, u2}.

Let us focus on Eq.(1). When uk is close to 0, the effect of
the smoothness will vanish. When increases uk to 1, the effect
of the original data tends to be ignored. The value of uk tunes
the smoothness of input data based on Gaussian function as
shown in Eq.(2). Let’s keep increasing uk to a large number
(� 1), intensities of input data will be over-exposed and they
grow to 255. When it turns to 255, input data will be regarded
as binary images. The classification will purely depend on
those binary images. If it turns to 0, input data will turn black,
which will be discarded in the network processing.

The loss function is usually based on the cross-entropy and
the update of the weight and bias uses the backpropagation
technique. Similarly, we can also update U in the same way
based on the loss error E as shown in Eq.(4), where η is
a user-defined learning rate. To make it easy to follow, we
ignore the sampling and convolution layer in the propagation
as shown in Fig.3.

u+k = uk − η ·
∂E

∂uk
. (4)

As shown in Fig.3, p and q are two hidden nodes and o
is the output node. netp and outp are the input and output
of p, respectively. The same to the node q and o. We have
outi = f(neti), where the activation function f can be ReLU
or LeakyReLU and we denote f ′ = ∂outi

∂neti
. Based on Eq.(1),

we have

neto (i, j) =
1

2
(1− u2)2 · outq (i, j)

+

i+ao∑
i−ao

j+ao∑
j−ao

(G (i, j) · outq (i, j)) . (5)

Denote E′ as the derivative of E with respective to the
output of layers and let G′ as the derivative of G with
respective to uk. We have

∂E

∂u2
=

∂E

∂outo
· ∂outo
∂neto

· ∂neto
∂u2

= E′ · f ′ · (u2 − 1) · outq (i, j)

+

i+ao∑
i−ao

j+ao∑
j−ao

(G′ (i, j) · outq (i, j)) . (6)

Therefore,

∂E

∂u1
=

∂E

∂netq
· ∂netq
∂u1

=
∂E

∂outo
· ∂outo
∂neto

· ∂neto
∂outq

· ∂outq
∂netq

· ∂netq
∂u1

. (7)

Fig. 4. Processing of synthetic point cloud sets. (a) Hemispheres. (b) Cones.
(c) Cubes. (d) Cylinders. (e) Pyramids. (f) Rings. (g) Stars.

TABLE I
ACCURACY OF DIFFERENT ACNN STRUCTURES.

ID NoL ASC r c F Size Loss MCR
1 7 2 (1,4) (5,7) 1 32 0.06 0.13
2 10 3 (1,2,4) (5,3,3) 1 32 0.02 0.01
3 13 4 (1,1,2,4) (3,3,3,3) 1 32 0.11 0.29
4 11 3 (1,2,4) (5,3,3) 2 32 0.25 0.34
5 12 3 (1,2,4) (5,3,3) 3 32 0.36 0.51
6 10 3 (1,2,4) (5,3,7) 1 64 0.18 0.23

III. EXPERIMENTS AND EVALUATIONS

A. Performance on the 3D object classification

We apply the proposed ACNN on a synthetic point cloud
dataset containing seven 3D polyhedron objects generated by
Sketchup (www.sketchup.com), namely hemispheres, cones,
cubes, cylinders, pyramids, rings, and stars as shown in Fig.4.
In this case, each polyhedron set contains 100 instances, and
we set the ratio of the training set, validation set, and test set
for each label as 7:1:2, respectively. The training set is used
to tune weights for the network, the validation set is prepared
for the detection of the overfitting, and the test set is designed
for the accuracy calculation.

In preprocessing, the projection is based on the rotation of
3D point clouds along the axis. The evaluation metrics in-
clude cross-entropy loss error (Loss) and miscalculation error
(MCR). We try different ACNN structures and show results in
Table I with the same number of kernels in each layer. The
first column ‘ID’ means the experiment number, ‘NoL’ means
the number of layers in the network, ‘ASC’ means the number
of augmentation-sampling-convolution modular, ‘r’ means the
ratio of each sampling layer, ‘c’ means the kernel size of each
convolution layer, ‘F’ means the number of full connection
layer, ‘Size‘ is the size of input data, ‘Loss’ is the entropy
loss error and ‘MCR’ is the miscalculation error calculated by
the ratio of correctly classified objects.

As shown in Table I, results highly depend on the network
structure, and we achieve the best performance at ID #2. We
use 13,22,17,36 for the kernels of the first, second, third con-
volution layer and the full convolution layer to generate feature
maps. In this case, our ACNN works well at 10 layers. When
we enlarge the size of input data or increase the number of
layers, the accuracy did not show any improvements, because
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Fig. 5. Accuracy plot of the ACNN. (a) Results of the ACNN on synthetic
point clouds without augmentation layers. (b) Results of the ACNN on
synthetic point clouds with augmentation layers.

we incur more parameters in the training, which makes U
be a high-dimensional vector. Because of the complicated
error propagation, we suggest users stay at a less complex
network structure to keep a low dimensional vector in U,
otherwise, users are required to choose better optimization
methods to address the overfitting. The size of the input
data is determined empirically. Experiments show that in the
case of basic geometrical shape object classification, ACNN
does not ask for a large resolution, when capturing the local
features. Data with a large resolution requires more complex
network layers in the optimization, otherwise, the accuracy
can be undesired. Results of the augmentation, sampling, and
convolution in the first ASC are shown in the second, third,
and fourth row of Fig.4, respectively. In the evaluation, we use
both LOSS and MCR metrics. The dissimilarity lies in that
LOSS focuses on the evaluation of the optimization error and
MCR intends to measure the object classification. Although
the LOSS can be periodic rise and fall, the classification error
can still be converged which is based on the activation function
at the end of the networks.

For the ablation analysis, we show results of ordinary
convolution layers with nonlinear activation functions. We
fix the U as a constant 0, which means that we turn off
the augmentation layer. At this time, both the loss error and
MCR increase greatly as shown in Fig.5(a) compared with
results of ID #2 as shown in Fig.5(b). Experiments show
that the proposed augmentation layer plays a significant role
in capturing local features and we have achieved a higher
improvement than classical CNNs. Please be aware that our
work does not require projection plane optimization because
we have used redundant projection planes in the network pro-
cessing. Although it may increase the time cost, the proposed
ACNN succeeds in providing high-quality results by checking
information from all provided projection data.

For comparison of our methods with others, we test the
ACNN on the public object classification benchmark Model-
Net [10] containing a comprehensive clean collection of 3D
CAD models for objects. ModelNet10 and ModelNet40 con-
tain CAD models from the 10 and 40 categories, respectively.
The training and testing split is included in the file. The CAD
models are completely cleaned in-house, and the orientations
of the models are manually aligned by the developers.

Our comparison results are shown in Table II. The displayed
methods contain VoxelNet [11], GIFT [12], Zanuttigh and
Minto (ZM) [13], binVoxNetPlus (bVNP) [14] and Primitive-

TABLE II
COMPARISON WITH THE OTHER APPROACHES (%).

Accuracy VN GIFT ZM bVNP PG ACNN
ModelNet10 92.00 92.35 91.50 92.32 92.20 92.52
ModelNet40 83.00 83.10 87.80 85.47 86.40 89.11

GAN (PG) [15]. Accuracy values are obtained from the
online benchmark (http://modelnet.cs.princeton.edu, accessed
in 2021/11/30).

In the comparison, VN is based on the binary occupancy
grid information, which provides an easy 3D convolution
process in ModelNet classification. Similarly, bVNP provides
binary volumetric CNNs for 3D object recognition, which
transforms the inputs and weights to binary values. GIFT uses
their 3D shape search engine based on the projective images of
3D shapes, which provides efficient results in the classification
when input data are collected with a similar density. The
accuracy of these three methods degrades greatly when adding
more labels in the classification. ZM takes a multi-branch
convolutional neural network for shape classification. PG uses
a factorized generative model for 3D shape generation, which
chooses the primitive parts for shapes as attributes. Those
two methods achieve high accuracy on both ModelNet10 and
ModelNet40, but ZM requires an extra linear classifier for the
vector classification, and PG requires the multi-view rendering
process to capture more features. Our ACNN is in an end-
to-end framework, which captures local features through the
proposed augmentation layers. Although our method fails to be
better than others in some CAD models, such as the bench,
sofa, and table, we show a high performance in the overall
accuracy than others.

B. Performance on the laser scanning point classification

As shown above, the proposed method works well in 3D
object classification. In order to show our robustness, we also
test the performance on the laser scanning point classification,
i.e. semantic segmentation. One key difference between object
classification and semantic segmentation is the input data. The
former input requires input 3D instance, and the latter asks
for original points which can be difficult because of numerous
noise points and points’ various densities.

In order to apply our work to the classification of outdoor
laser scanning point clouds, we first conduct the instance
clustering on the input scene. If the input scene is very
complex, users can split it into small scales. Each instance
is prepared as an input for the ACNN. Experimental data are
collected by Riegl VMX-450. Laser data collection density
was calculated by selecting 1 m radius patches along the
vehicle trajectory every 50 m. A mean point density along
the trajectory of approximately 750 pts/m2. All areas to be
scanned met a minimum threshold of 500 pts/m2 along the
hard surfaces. The learning process includes 125 bins, 428
buildings, 399 low vegetation, 167 pedestrian, 163 poles, 88
traffic signs, 596 high vegetation, and 460 vehicles as shown
in Fig.6.

In this case, our LOSS and MCR are 0.48 and 0.28, respec-
tively. Results of the augmentation, sampling, and convolution
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Fig. 6. Processing of laser scanning point clouds. (a) Bins. (b) Buildings. (c)
Low vegetation. (d) Pedestrian. (e) Poles. (f) Traffic signs. (g) High vegetation.
(h) Vehicles.

Fig. 7. Qualitative analysis. (a) Input laser scanning point clouds. (b) Semantic
segmentation results by the ACNN.

from the first ASC are shown in the second, third, and fourth
row of Fig.6. For the qualitative analysis, we demonstrate
classification results in Fig.7 showing that the ACNN works
effectively in point classification, especially in planar or linear
objects.

It is worth noting that in the case of semantic segmentation,
we are required to perform instance segmentation first, and
then transform points from each instance into a 2D space
image for the ACNN. Although our transformation processing
manner brings information losses, we can increase the number
of projection views to help capture more features. The key
addressed issue lies in the classification of unorganized point
clouds. The projection of point clouds on 2D space is a set of
scatter points, which can be trained in our ACNN, and there
is no need to fuse the captured 2D features and the original
3D point clouds.

IV. CONCLUSION

In this work, we address the feature limitation in CNNs,
and propose an augmentation convolutional neural network
(ACNN), which is a novel trainable deep architecture for the
classification of laser scanning point clouds.

The augmentation magnitude is updated and optimized in
the learning process, which provides abundant feature maps for
point clouds and helps the network capture more local features,
e.g. edges, contour, and curves. These contributions enable us
to obtain a high performance in the point classification. The
proposed ACNN has achieved the overall accuracy of 92.52%
and 89.11% in ModelNet10 and ModelNet40, respectively,
and the misclassification error of 0.28 on laser scanning point
clouds, which shows that we are effective in both the object
classification and the semantic segmentation at a less complex
network. In future work, it is worthwhile trying to tune the

projection angle of the proposed network in the learning
process automatically. It is also interesting to drop out the
potential redundant features maps in the augmentation for less
computation.
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