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1 Plane Segmentation Based on the
2 Optimal-Vector-Field in LiDAR Point Clouds
3 Sheng Xu , Ruisheng Wang , Hao Wang, and Ruigang Yang , Senior Member, IEEE

4 Abstract—One key challenge in the point cloud segmentation is the detection and split of overlapping regions between different

5 planes. The existing methods depend on the similarity and the dissimilarity in neighbor regions without a global constraint, which brings

6 the ‘over-’ and ‘under-’ segmentation in the results. Hence, this paper presents a pipeline of the accurate plane segmentation for point

7 clouds to address the shortcoming in the local optimization. There are two phases included in the proposed segmentation process. One

8 is a local phase to calculate connectivity scores between different planes based on local variations of surface normals. In this phase, a

9 new optimal-vector-field is formulated to detect the plane intersections. The optimal-vector-field is large in magnitude at plane

10 intersections and vanishing at other regions. The other one is a global phase to smooth local segmentation cues to mimic leading

11 eigenvector computation in the graph-cut. Evaluation of two datasets shows that the achieved precision and recall is 94.50 percent and

12 90.81 percent on the collected mobile LiDAR data and obtains an average accuracy of 75.4 percent on an open benchmark, which

13 outperforms the state-of-the-art methods in terms of completeness and correctness.

14 Index Terms—Plane segmentation, optimal-vector-field, point clouds, surface normals, graph-cut

Ç

15 1 INTRODUCTION

16 SEGMENTATION from point clouds is the process of partition-
17 ing input data into multiple regions, which has provided
18 benefits for many applications, e.g., artifact modeling [1],
19 vegetation reconstruction [2] and ROI (Region of Interest)
20 detection [3]. In general, segmentation results can be divided
21 into two levels, the primitive level, e.g., line [4], plane [5] and
22 cylinder [6], and individual object level [7], [8]. A new com-
23 monly used approach for the object-level segmentation is
24 based on the deep learning [9], [10], which is a supervised
25 learning technique. However, the definition of an individual
26 object is related to a definite application, e.g., the vehicle
27 detection [10] or semantic scenes segmentation [9]. Besides,
28 the supervised learning method needs to manually segment
29 a large number of objects for setting the training set, which is
30 often tedious, redundant in the complex outdoor scene, and
31 requires a high-performance GPU (Graphics Processing
32 Unit) for accelerating algorithms. Therefore, this paper pro-
33 poses a general unsupervised plane segmentation method to
34 deal with the existing segmentation bottleneck, i.e., the incor-
35 rect split of overlapping regions from different planes, and to

36demonstrate the comparison of results with deep learning
37methods.
38Contributions of the proposed segmentation pipeline lie
39in a local phase and a global phase. The local phase calcu-
40lates the connectivity scores of planes based on the local var-
41iations of surface normals. The global phase performs the
42leading eigenvector computation to produce the desired
43segmentation. Two key points of this paper are as follows.

441) We optimize a new optimal-vector-field to provide
45local segmentation cues, which is large in magnitude
46at plane intersections and vanishing at other regions,
47for obtaining segmentation cues.
482) In the existingwork, the optimal segmentation is often
49based on an object division strategy. For example, in
50the graph-cut process, users have to define the back-
51ground and foreground objects to split two regions.
52The multi-object segmentation requires users to itera-
53tively use a single-cut or design a multi-way cut for
54the optimization, which involvesmuch calculation. To
55address this issue, we propose a non-iterative strategy
56for the accurate plane segmentation by performing a
57single graph-cut on the obtained cues.

582 RELATED WORK

59Nowadays, researchers have developed various methods to
60fit planes, such as building facades or walls. Planes are usu-
61ally detected with the region growing technique [11], which
62increases object regions from given seed positions and stops
63the propagation based on user-defined priors. For example,
64[12] merge points sharing similar normal vectors and [13]
65group points which can be fitted by the same plane function.
66Although region growingbased algorithms output high
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67 quality and consistent models of planes, they fail to segment
68 those incomplete or occluded planes.
69 In order to be robust to the incomplete input data, [14]
70 and [15] introduce the Random Sample Consensus (RAN-
71 SAC) to segment points based on their distance to primitive
72 models, e.g., spheres, cylinders, and cones. RANSAC-
73 detected planes can be hierarchically assembled, and the
74 discovery of their intersections helps recover full planes.
75 RANSAC-based methods work well in environments
76 mainly made of planar surfaces, which are usually followed
77 by a clustering of the parameter space to refine segmenta-
78 tion results. For example, the k-means approach [16], [17]
79 partition points into different sets by ensuring that the sum
80 of the distance of each point in the cluster to the center
81 achieves its minimum. In the work of [18], they propose a
82 plane extraction method based on an agglomerative cluster-
83 ing (PEAC). They segment planes from point clouds effi-
84 ciently when the input point clouds are well-organized. The
85 segmentation accuracy of the above-mentioned approaches
86 highly depends on parameters. Their results are more likely
87 to be locally optimal, resulting in a high under- or over-seg-
88 mentation rate when choosing non-optimal parameters.
89 Awell-known globally optimal segmentation technique is
90 the graph-based method, which treats the point cloud seg-
91 mentation as a labeling problem to achieve theminimization.
92 Each point is assigned with one possible label and the chal-
93 lenge is to find the optimal label configuration for all points
94 according to energy functions. Two prominent examples are
95 the normalized-cut [19] and the graph-cut [20], which build a
96 graph that formulates and smooths local segmentation cues
97 to produce the desired segmentation. The normalized-cut
98 has been used in 2D image segmentation for a long time [21],
99 [22]. It partitions a graph into two disjoint groups by mini-

100 mizing the dissimilarity within each group and maximizing
101 the dissimilarity between different groups. In the point cloud
102 segmentation, [7] achieve high accuracy in the extraction of
103 pole-like objects from mobile laser scanning (MLS) data and
104 [23], [24] succeed in reducing the rate of the over-segmenta-
105 tion. The solution cut for separating the graph into two opti-
106 mal parts is obtained in a similar way as in 2D segmentation
107 after adding the elevation information. The normalized-cut
108 requires users to initialize the number of objects in the multi-
109 target segmentation and uses the one-vs-others strategy to
110 iteratively partition scene into two disjoint groups. The
111 graph-cut is proved as another efficient interactive segmen-
112 tation method for natural images as shown in [25], [26]. The
113 authors formulate the energy function using binary varia-
114 bles, and values (i.e., 0 or 1) indicate whether a pixel belongs
115 to the foreground or background. The solution cut for sepa-
116 rating the graph into the optimal background and fore-
117 ground is obtained by solving theminimum cut of the graph.
118 The graph-cut has obtained an impressive performance in
119 the segmentation of LiDAR point clouds as shown in the
120 work of [27] and [28]. However, graph-cut usually requires a
121 computer-human interaction step to indicate the foreground
122 and background. Moreover, similar to the normalized-cut,
123 graph-cut also chooses the one-vs-others strategy to itera-
124 tively detect the foreground and background in multi-target
125 segmentation. The one-vs-others strategy degrades the supe-
126 riority of the algorithms for the binary labeling segmenta-
127 tion, e.g., the requirement of manually initializing the
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141142number of labels and the propagation of segmentation errors
143in each iteration.
144Before the discussion of the plane segmentation, we
145know that there are two regions in a point cloud scene. One
146is the connectivity region containing points from plane
147intersections. The other one is the non-connectivity region
148containing the rest of the input points. Since connectivity
149regions consist of all intersections, if one removes all con-
150nectivity regions, the input scene will be split into disjoint
151clusters and each cluster stands for a plane. However, two
152different surfaces can be consistent with the semantic struc-
153ture. For two touching surfaces, there is a high chance to be
154clustered as one set. Therefore, a robust indicator to detect
155plane intersections is necessary, which will be implemented
156by a new optimal-vector-field. The following is a brief over-
157view of the proposed segmentation. In the local phase, we
158formulate a new optimal-vector-field to detect the potential
159intersections in point clouds. Then, in the global phase, we
160divide the input scene into connectivity and non-connectiv-
161ity regions by using a graph-based segmentation model.
162After those two phases, we cluster points from non-connec-
163tivity regions into disjoint groups. Fig. 1 demonstrates an
164example of our segmentation. Fig. 1a shows the input scene,
165(b) shows the result of the binary division, and (c) shows
166the result of the plane segmentation.

1673 NORMAL VECTOR ESTIMATION AND

168CONNECTIVITY VALUE CALCULATION

169In our work, the optimal-vector-field is defined as an assign-
170ment of a vector to each point in a subset of space based on
171the normal vector estimation. The normal vector at a point
172is approximated as the normal to the surface estimated by
173its k-nearest neighborhood points. Assuming that there are
174k points in the estimation, based on singular value decom-
175position (SVD) method we have

x1 y1 z1
x2 y2 z2
::: ::: :::
xk yk zk

2
664

3
775 ¼ Dk�3 ¼ Uk�kSk�3V

>
3�3; (1)

177177

178where D is the input matrix decomposed into the matrices
179U, S and V. The column vector in V, which corresponds to
180the smallest eigenvalue in the decomposition (usually the
181last one), is chosen as the normal vector at the given point.
182Fig. 2 shows the calculated normal vectors of a point cloud

Fig. 1. The process of the proposed plane segmentation. (a) Input
scene. (b) The divided connectivity and non-connectivity regions. (c)
The plane segmentation result. Distinct colors mean different planes.

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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184 vector visualized as a cone.
185 One key issue of the normal vector estimation at points is
186 their inconsistent directions, i.e., vectors are in the reverse
187 direction on a local plane. The commonly used solution is
188 by measuring the difference of neighboring vectors and
189 propagating the consistent orientation along a surface [29].
190 Our idea is that, for a current point c0 and its neighboring
191 points c1, c2 and c3 as shown in Fig. 3a, if both
192 jcosðffðVðc0Þ; c0; cj��!ÞÞj and jcosðffðVðcjÞ; c0; cj��!ÞÞj exceed a
193 threshold (0.9 in our case), we flip the normal direction at cj,
194 i.e., c2 in this example. Consistency results are shown in
195 Fig. 3b. To ensure the convergence, first, we split the input
196 scene into proper disjoint cubes ( 0.5 m by 0.5 m by 0.5 m in
197 this work) before the flipping operation. Then, for each
198 cube, we randomly select one point as c0 and conduct the
199 point-by-point consistency operation for other points in this
200 cube based on the angle information.
201 Next, we show the calculation of connectivity scores of
202 points to obtain the magnitude of each point in the optimal-
203 vector-field. In our work, the connectivity score hðx; y; zÞ of
204 a point ci at the coordinate ðx; y; zÞ is calculated by

hðx; y; zÞ ¼ 1P
cj2csi jVðciÞ �VðcjÞj ; (2)

206206

207 where VðciÞ is the normal vector at ci, and csi is the set of ci’s
208 k-nearest neighbors. Based on Eq. (2), since a point from the
209 non-connectivity region sharing the similar normal vector
210 with its neighborhood points, there will be a much smaller
211 h than a point from the connectivity region. The illustration
212 of connectivity scores is shown in Fig. 4. Connectivity scores
213 of points from the intersection of two planes are much
214 higher than points within a plane as shown in Fig. 4a.

215 4 OPTIMAL-VECTOR-FIELD OPTIMIZATION

216 Although the connectivity score defined in Eq. (2) can high-
217 light the region of connectivity between planes as shown in

218Fig. 4a, the score is difficult to indicate the connectivity in
219complex surfaces as shown in Figs. 4b and 4c. The normal
220vectors at points from those surfaces are in different direc-
221tions, and the score depends on the curvature information.
222To address this issue, we take the gradient of points into
223consideration and propose an optimal-vector-field proce-
224dure for obtaining segmentation cues using the global infor-
225mation. The optimization is shown in Fig. 5. In the vector
226field modeling, the gradient information and connectivity
227score are calculated to formulate the objective function. To
228solve the energy function, both the analytical solution and
229the numerical solution are derived. To ensure the conver-
230gence, the stableness of the solution is analyzed at the end
231of the procedure.
232The key to the above-mentioned procedure is formula-
233tion and optimization of the optimal-vector-field, whose
234direction is intended to be consistent with the normal vector
235and the magnitude will be related to the connectivity score.
236We design three principles for the optimal-vector-field for-
237mulation. First, the vector direction is perpendicular to the
238surface fitted by its k-neighborhood points. Second, vectors
239are large in magnitude only at the points from the connec-
240tivity regions. Third, vectors are nearly zero in magnitude
241at the points from the non-connectivity regions. Details of
242the optimal-vector-field optimization are shown below.

Fig. 2. Visualization of normal vectors. (a) Oblique view. (b) Top view.

Fig. 3. Consistency of normal vectors based on the angle information. (a)
Initial normal vectors and points. (b) The adjustment of the normal vector
at c2.

Fig. 4. Illustration of connectivity scores of point clouds. (a) Point clouds
of a cube. (b) Point clouds of a cone. (c) Point clouds of a half-sphere.

Fig. 5. The algorithm figure to describe the optimal-vector-field optimiza-
tion procedure.
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243 The optimal-vector-field magnitude F of a point at the
244 coordinate ðx; y; zÞ is formed as a functional

F ðu; v; wÞ ¼ ½uðx; y; zÞ; vðx; y; zÞ; wðx; y; zÞ�; (3)
246246

247 where u, v and w are functions of the coordinate ðx; y; zÞ and
248 they measure the field in different dimensions. The follow-
249 ing equation aims to optimize an energy function which fol-
250 lows the principle that it keeps the field F nearly equal to h
251 in the connectivity region, but forces the field to be slowly-
252 varying in the non-connectivity region. The proposed
253 energy function is defined as

E ¼
ZZZ

�Eg þ Eh

� �
dxdydz

¼
ZZZ

f� 5u � 5u> þ5v � 5v> þ5w � 5w>� �
þ h� F � hð Þ2gdxdydz;

(4)

255255

256 where Eg measures the gradient of u, v and w, and Eh

257 detects the connectivity region using the connectivity score
258 h. The target of Eg is to decrease the magnitude of the opti-
259 mal-vector-field within a plane using the gradient informa-
260 tion, and Eh is to highlight the magnitude of the optimal-
261 vector-field using the connectivity score cue. The regulariza-
262 tion parameter � is to balance Eg and Eh in the integrand. If
263 h is small, the energy E is dominated by Eg, which is the
264 sum of the squares of F ’s partial derivative and tends to be
265 a slowly varying field. If h is large, Eh dominates the energy
266 and E achieves the minimization by setting F ¼ h.
267 The gradient is defined based on the work of [30] using
268 the point’s density. At first, voxels are generated for the
269 point cloud. Then, the density at a point is approximated by
270 the number of points in the generated voxel at this point.
271 Finally, the gradient of a point is calculated by the differ-
272 ence of the density at adjacent points. Details of setting the
273 voxel size and number are shown in [30]. No matter the
274 point cloud is uniformly sampled or not, the gradient of
275 points from the intersection of surfaces will be large in more
276 than one direction [30].
277 In the optimization of Eq. (4), we use Euler equation [31]
278 to minimize the energy. The problem-solving process is
279 shown in Appendix A, which can be found on the Computer
280 Society Digital Library at http://doi.ieeecomputersociety.
281 org/10.1109/TPAMI.2020.2994935, and the result is

�4 u� h� ðu� hÞ ¼ 0; (5a)

283283

284

�4 v� h� ðv� hÞ ¼ 0; (5b)

286286

287

�4 w� h� ðw� hÞ ¼ 0; (5c)
289289

290 where4 is the Laplace operator.
291 To calculate Eq. (5) in a numerical method, we add a time
292 t in u, v and w as utðx; y; z; tÞ, vtðx; y; z; tÞ and wtðx; y; z; tÞ,
293 respectively. Equation (5) is solved by regarding u, v and w
294 as functions of t and calculated as

utðx; y; z; tÞ ¼ �4 uðx; y; z; tÞ � hðx; y; zÞ
� ðuðx; y; z; tÞ � hðx; y; zÞÞ ¼ 0;

(6a)
296296

297

vtðx; y; z; tÞ ¼ �4 vðx; y; z; tÞ � hðx; y; zÞ
� ðvðx; y; z; tÞ � hðx; y; zÞÞ ¼ 0;

(6b)
299299

300wtðx; y; z; tÞ ¼ �4 wðx; y; z; tÞ � hðx; y; zÞ
� ðwðx; y; z; tÞ � hðx; y; zÞÞ ¼ 0:

(6c)
302302

303

304Since the above-formulated diffusion equations are
305decoupled, they can be solved as separate scalar partial dif-
306ferential equations in u, v and w. The steady-state solution
307of those diffusion equations is the answer to Eq. (4). To set
308up the iteration, let the spacing between points be Dx, Dy,
309and Dz and the time step for each iteration be Dt. Then, the
310required partial derivatives are approximated as

ut ¼ 1

Dt
ðutþ1

x;y;z � ut
x;y;zÞ; (7a)

312312

313

vt ¼ 1

Dt
ðvtþ1

x;y;z � vtx;y;zÞ; (7b)
315315

316

wt ¼ 1

Dt
ðwtþ1

x;y;z � wt
x;y;zÞ: (7c)

318318

319The4u is calculated as

4u ¼ @2u

@x2
þ @2u

@y2
þ @2u

@z2

¼ uxx

DxDyDz
þ uyy

DxDyDz
þ uzz

DxDyDz
;

(8)

321321

322where

uxx ¼ uxþ1;y;z þ ux�1;y;z � 2ux;y;z;

uyy ¼ ux;yþ1;z þ ux;y�1;z � 2ux;y;z;

uzz ¼ ux;y;zþ1 þ ux;y;z�1 � 2ux;y;z:
324324

325Combined Eqs. (6)a, (7)a, and (8), we have

1

Dt
utþ1
x;y;z � ut

x;y;z

� �
¼ �ðut

xx þ utyy þ ut
zzÞ

DxDyDz

� hx;y;z ut
x;y;z � hx;y;z

� �
:

327327

328Rewrite this equation to obtain the update formula as

utþ1
x;y;z ¼ 1� hx;y;zDt

� �
ut
x;y;z

þ �Dt

DxDyDz
� ut

xx þ utyy þ ut
zz

� �
þ Dth2

x;y;z:
(9)

330330

331Similarly, we can obtain the update formula for vtþ1
x;y;z andwtþ1

x;y;z.
332To ensure that the proposed numerical scheme converges
333well in the calculation of utþ1

x;y;z, v
tþ1
x;y;z and wtþ1

x;y;z, it is necessary
334to analyze the stableness of the proposed scheme. As men-
335tioned in Courant-Friedrichs-Levy condition (CFL condi-
336tion) [32], the numerical domain of dependence must
337contain the physical domain of dependence in order to
338obtain a stable solution. The stability of a scheme means
339that mistakes at one-time step of the calculation do not
340increase errors as the computations continue. In Lax equiva-
341lence theorem [33], stability is the necessary and sufficient
342condition for the convergence of a scheme. Our stability
343analysis is based on the Von Neumann method [34]. Details
344of the convergence analysis are shown in Appendix B, avail-
345able in the online supplemental material. When Dx, Dy, Dz
346and � are fixed, we find that the following restriction in
347Eq. (10) on the time-step must be maintained to guarantee
348convergence of the iterative process in Eq. (9).
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Dt � DxDyDz

6�
: (10)

350350

351

352 In the calculation of the optimal-vector-field, when Dx, Dy
353 and Dz are large, the convergence can be made to be fast by
354 choosing a large Dt. F is iteratively calculated by optimizing
355 energy with a diffusion process. F can be regarded as a set of
356 vectors. u, v, and w are the component of F in different
357 dimensions. Those components are calculated through the
358 diffusion process and provide cues to the segmentation in
359 the local phase. Fig. 6 illustrates the optimal-vector-field of
360 different point clouds. Fig. 6a shows eight input point cloud
361 sets, including the cube, cylinder, cone, pyramid, ring, half-
362 sphere, star, and mixed-shape. Fig. 6b displays the corre-
363 sponding optimal-vector-field in Fig. 6a. In the visualization
364 of the optimal-vector-field, if the magnitude at a point is
365 non-zero, there will be a small red cone as shown in Fig. 6b.
366 Points from the connectivity region have a largemagnitude.

367 5 PLANE SEGMENTATION WITH A SINGLE

368 GRAPH-CUT

369 This section aims to divide the input scene into the connec-
370 tivity and non-connectivity regions by using a single graph-
371 cut. The optimization procedure is shown in Fig. 7. In the
372 graph modeling, nodes are built by voxels and the weight
373 calculation is based on the defined data term and smooth-
374 ness term. The key to the data term and the smoothness
375 term is the divergence calculation and the curvature dis-
376 tance, respectively. The objective function formulated by
377 the data term and smoothness term will be minimized by a
378 single graph-cut. The foreground and background in the
379 graph-cut process are corresponding to our connectivity
380 regions to be removed and non-connectivity regions to be
381 combined. Details of the graph-cut optimization are shown
382 below.

383Assume that C is an arbitrary set of points and N is a set
384of the neighborhood system to represent all pairs fc; c0g of
385neighboring elements in C. Let L ¼ ðl1; . . . ; li; . . . ; ljCjÞ be a
386binary vector to describe the label configuration of each
387point for the segmentation. Our segmentation energy func-
388tion is formulated as

EðC;LÞ ¼ DðC;LÞ þ gSðC;LÞ; (11)
390390

391where DðC;LÞ is the data term to measure how appropriate
392a label lc is for a point c 2 C, and SðC;LÞ is the smoothness
393term to constrain labels of neighboring points. The coeffi-
394cient g is to balance the above two terms.
395Based on the property of the optimal-vector-field, we
396know that points from the connectivity region have a large
397divergence. Therefore, we formulate the data term as

DðC;LÞ ¼
X
c2C

dðc; lcÞ; (12)

399399

400where dðc; lcÞ depends on the divergence of the optimal-vec-
401tor-field at a point. The binary label lc is chosen from 0 (the
402connectivity region) and 1 (the non-connectivity region).
403Our rule is that dðc; lcÞ should be penalized if the divergence
404divðcÞ is less than �, when lc is 0, or if the divergence divðcÞ
405is larger than �, when lc is 1. � is a small positive number. In
406Table 1, we show penalties for points of different labels
407based on the divergence.
408Next is the formulation of the smoothness term. Since the
409curvature value at points from the connectivity region is
410usually much larger than those from the non-connectivity

Fig. 6. Illustration of the optimal-vector-field of point clouds. (a) Input
datasets. (b) Optimal-vector-field of (a).

Fig. 7. The algorithm figure to describe the graph-cut optimization
procedure.

XU ET AL.: PLANE SEGMENTATION BASED ON THE OPTIMAL-VECTOR-FIELD IN LIDAR POINT CLOUDS 5
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412 ness as

SðC;LÞ ¼
X

fc;c0g2N
bc;c0 � dðlc; lc0 Þ; (13)

414414

415 where N contains all unordered pairs of neighboring points
416 in C. dðlc; lc0 Þ outputs a binary number to indicate the
417 continuity of labels, i.e., if lc 6¼ lc0 , dðlc; lc0 Þ ¼ 1, otherwise
418 dðlc; lc0 Þ ¼ 0. bc;c0 is interpreted as a penalty for the disconti-
419 nuity of neighbors’ labels and formulated as a function of
420 the curvature distances by

bc;c0 ¼ e� rc�rc0ð Þ2 ; (14)
422422

423 where rc and rc0 are the curvedness [35] at the point c and c0,
424 respectively. The curvedness is to describe how highly or
425 gently curved a surface is at a point. It is zero only for pla-
426 nar patches and tends to be large for the uneven planes.
427 When dðlc; lc0 Þ ¼ 1, if the curvedness at the point c and c is
428 similar, i.e., within the non-connectivity region, bc;c0 is large;
429 if their curvedness values are different, i.e., within the con-
430 nectivity region, bc;c0 is small. Details of the curvedness cal-
431 culation are shown in [35], which is based on the Gaussian
432 curvature and mean curvature.
433 The minimization of Eq. (11) in the global phase can be
434 achieved by many developed models, e.g., Laplacian
435 smoothing [36], anisotropic diffusion [37], graph-cut [20]
436 and normalized-cut [19]. Since points from the connectivity
437 region are much less than those from the non-connectivity
438 region, we prefer to choose the graph-cut model to divide a
439 scene into the connectivity and non-connectivity region. In
440 the graph formulation, we use the voxelization technology
441 to divide input point clouds into voxels. The size of voxels
442 depends on the density of point clouds. If the input scene is
443 divided by large voxels, the connectivity regions will
444 become blurred. If it is divided by small voxels, the time-
445 cost will increase greatly. In our case, we fix the size of vox-
446 els as 1 cm by 1 cm by 1 cm. Each voxel will be regarded as
447 a node in the graph. Every two nodes are weighted by the
448 formulated data term and smoothness term. If the euclidean
449 distance of two nodes is larger than 1 m, the weight between
450 them will be set as infinite. There are lots of infinities in the
451 weight matrix. To relieve the space complexity, one can use
452 a sparse matrix strategy to store graph nodes. When
453 the graph is built, users can conduct the graph-cut method
454 [38], [39], [40] to divide nodes into background and fore-
455 ground, i.e., non-connectivity regions and connectivity
456 regions, respectively.
457 After we remove the connectivity regions of a point
458 cloud, planes will have no intersections. Therefore, the non-
459 connectivity regions can be clustered into a set of disjoint
460 groups based on the euclidean distance easily. Each region

461is regarded as a plane. It is worth noting that the points of
462intersections will not present in the final segmentation.
463To help further understand the effect of the optimization
464with data term (O-D) and the optimization with data term
465and smoothness term (O-DS) in the plane segmentation, we
466conduct an ablation study as shown in Fig. 8. The first two
467rows show the segmentation results by using the O-D strat-
468egy. Although the data term segments planes from the syn-
469thetic point clouds in Figs. 8a, 8b, and 8c, there appears the
470over-segmentation in complex planes as shown in Figs. 8d,
4718e, and 8f. The leaf is divided into pieces due to the added
472slight wrinkle. The tree trunk and lamppost are over-split
473into multiple segments. This is because the data term tends
474to be sensitive to the bending non-connectivity regions. In
475the ablation study, there is no difference in results between
476the O-D and O-DS from scenes in (a) to (c). The advantage
477of O-DS lies in addressing the above-mentioned over-seg-
478mentation issues in bending regions as shown in Figs. 8g,
4798h, and 8i.

4806 EVALUATIONS AND RESULTS

4816.1 Comparison of Different Methods

482Since the ground-truth for the plane segmentation in out-
483door scenes is difficult to be defined and reproduced, espe-
484cially in vegetation and thin pole-like objects, our ground-
485truth for the vegetation and poles are achieved by separat-
486ing the visually independent objects manually. We use the
487CloudCompare visualization software (www.danielgm.net)
488to segment each independent object one by one. The manu-
489ally obtained ground truth (MGT) is regarded as a kind of

TABLE 1
The Setting of Penalties in the

Data Term Calculation

divðcÞ lc=0 lc=1

> � dðc; lcÞ=0 dðc; lcÞ=1
� � dðc; lcÞ=1 dðc; lcÞ=0

Fig. 8. The effect of the data term and smoothness term in the proposed
optimization procedure. (a)-(f) are optimized with the data term only (O-D).
(g)-(i) are optimized with both data term and smoothness term (O-DS).
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490 the binomial distribution of ground-truth (GT). Assume that
491 R is the segmentation result from a specific algorithm. From
492 the Bayes rule, we know

ProðR;GT;MGT Þ
¼ ProðRjGT ÞProðGT ÞProðMGT jGT;RÞ
¼ ProðRjMGT ÞProðMGT ÞProðGT jMGT;RÞ:

494494

495 Therefore,

ProðRjGT Þ

¼ ProðRjMGT ÞProðMGT ÞProðGT jMGT;RÞ
ProðGT ÞProðMGT jGT;RÞ

¼ ProðRjMGT Þ � ProðMGT jGT Þ
ProðGT jMGT Þ �

ProðGT jMGT;RÞ
ProðMGT jGT;RÞ

¼ F � ProðRjMGT Þ:
497497

498

499 Both GT and MGT are independent of R, thus,F relies on
500 the ratio of ProðMGT jGT Þ=ProðGT jMGT Þwhich is the prob-
501 ability of choosing correct points by the human interaction
502 and can be assumed as a constant by the averaging approach.
503 Therefore, we use the evaluation of ProðMGT jRÞ and
504 ProðRjMGT Þ to approximate ProðGT jRÞ and ProðRjGT Þ as
505 illustrated in Fig. 9.
506 Suppose that the segmentation result is denoted by R ¼
507 fr1; r2; . . . ; rmig and the ground-truth is MGT ¼ fmgt1; . . . ;
508 mgtmjg. Each ri or mgtj means the point set of a segment.
509 There are mi segments in R and mj segments in MGT . For
510 the evaluation of the proposed segmentation, we adjust the
511 completeness ProðMGT jRÞ and correctness in [41], [42], [43]
512 ProðRjMGT Þ as

ProðMGT jRÞ ¼ 1

mi

Xmi

i¼1

maxmj
j¼1jmgtj

T
rij

jrij

 !
;

ProðRjMGT Þ ¼ 1

mj

Xmj

j¼1

maxmi
i¼1jri

T
mgtjj

jmgtjj
� �

;

(15)

514514

515 where ‘jj’ means the cardinality of a set.
516 ProðMGT jRÞ is to measure the ratio between the cor-
517 rectly segmented points and the total points in the result.
518 ProðRjMGT Þ is to measure the ratio between the correctly
519 segmented points and the total points in the ground-truth.
520 Both the criterion ProðMGT jRÞ and ProðRjMGT Þ range
521 from 0 to 1. The problem of Eq. (15) is that if mj ¼ 1,
522 ProðMGT jRÞ 	 1, and if mi ¼ 1, ProðRjMGT Þ 	 1. There-
523 fore, we choose the minimum of ProðMGT jRÞ and
524 ProðRjMGT Þ to measure the difference of points between
525 the MGT and R as

ndiff ¼ minðProðMGT jRÞ; ProðRjMGT ÞÞ: (16)527527

528To balance ProðMGT jRÞ and ProðRjMGT Þ, we choose the
529criterion F1-score for evaluating those segments with an
530imbalanced number of points [44] as

nF1 ¼ 2� ðProðMGT jRÞ � ProðRjMGT ÞÞ
ProðMGT jRÞ þ ProðRjMGT Þ : (17)

532532

533F1-score is calculated by the integration of ProðMGT jRÞ and
534ProðRjMGT Þ and ranges from 0 to 1.
535In the following, we will show the superiority of the pro-
536posed algorithm by comparing with region growing-based
537methods: KMiPC [17] and KNNiPC [45], graph-based meth-
538ods: 3DNCut [7] andMinCut [28], clustering-basedmethods:
539PEAC [18] andOHC [46]. The experimental scenes for testing
540are shown in Fig. 10, including the HouseSet (7 labels), Bush-
541esSet (3 labels), LamppostSet (8 labels), TreesSet (3 labels)
542and the PowerlinesSet (7 labels). Fig. 10 A shows the MGT of
543each scene. From B to H are the performance of KMiPC,
544KNNiPC, 3DNCut, MinCut, PEAC, OHC, and the proposed
545method, respectively. In the visualization, we use different
546colors to distinguish segments. In the implementation of the
547compared methods, KMiPC, KNNiPC, andMinCut are from
548PointCloudLibrary (www.pointclouds.org/), 3DNCut is
549extended from the normalized-cut (www.cis.upenn.edu/
550js̃hi/software/) and PEAC is achieved based on the software
551of [18] (www.merl.com/research/). The graph cut optimiza-
552tion in our work is based on the GCoptimization Library
553[38], [39], [40], [47]. A brief description of comparison results
554on each dataset is shown below.

Fig. 9. Approximate evaluation method.

Fig. 10. Performance of different segmentation methods. A.Ground-
truth. B.KMiPC. C.KNNiPC. D.3DNCut. E.MinCut. F.PEAC. G.OHC. H.
The proposed algorithm.
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556 euclidean distance information and the growing process is
557 based on the minimization of distances between points and
558 seeds. In 3DNcut andMinCut, the background and foreground
559 are iteratively segmented from scenes. In PEAC and OHC,
560 regions are clustered based on the surface normals and distan-
561 ces between points. In HouseSet, LamppostSet and Powerli-
562 nesSet, algorithms KMiPC, KNNiPC, 3DNcut, andMinCut fail
563 to split the connectivity regions, which is their accuracy bottle-
564 neck in the segmentation.We fail to separate the two planes for
565 the roof of the house. This is because we lose the segmentation
566 cue in the optimal-vector-field due to the data incompleteness
567 as shown in Fig. 11. In BushesSet, KMiPC, KNNiPC, 3DNcut,
568 and MinCut fail to split the bush and the ground. This shows
569 that they are easy to be affected by the point density. In those
570 three datasets, PEAC, OHC, and the proposed method show a
571 good performance in the separation of connected surfaces. The
572 superiority of the proposedmethodwill be shown in the subse-
573 quent numerical value evaluation. In TreeSet, only KMiPC
574 splits the input data into two trees accurately. The segmenta-
575 tion of trees is one of the most difficult tasks in point clouds.
576 Since tree leaves do not form a uniform surface and their diver-
577 gencewill be large, and presumablywill be extracted as part of
578 the connectivity region, the proposed algorithm segments tree
579 leaves into very small regions. Therefore, we add a rule in the
580 clustering of points from the non-connectivity region called the
581 small-region-combination (SRC). The corresponding optimal-
582 vector-field for each scene is shown in Fig. 12. As shown in
583 Figs. 12a, 12c, and 12e, the plane intersections have a large opti-
584 mal-vector-filed at the magnitude, which is quite different
585 from the non-connectivity region. In Figs. 12b and 12d, tree
586 leaves are segmented into pieces and will be combined based
587 on the SRC rule. The following will give a brief discussion
588 about the proposed SRC.

589The segmentation of tree crowns based on the coordinate
590information is difficult, and it is unavoidable to split tree
591leaves into pieces. Therefore, we add the SRC algorithm to
592combine spatially neighboring regions that have large con-
593nectivity scores. In order to decide whether to combine
594regions or not, we define an energy function Fe based on
595the average connectivity scores and the distance of two
596regions as

Fe ¼ Sp � Sq

Sp þ Sq
� 1
dr

; (18)

598598

599where Sp and Sq are average connectivity score of two
600regions, respectively, and dr is the closest euclidean distance
601between those two regions. The change tendency of Fe is
602demonstrated in Fig. 13. Fig. 13a shows that if two regions
603are very close (i.e., 0.01 m), Fe grows quickly when their
604connectivity scores are high. Fig. 13b shows that when dr is
605increasing, Fe grows slowly even though we enlarge the
606connectivity scores of regions.
607Based on the defined energy function, we set a threshold
608for cutting off the combination in the SRC. If Fe of two
609regions is larger than the threshold, those two regions will
610be combined. When the cut-off threshold is decreasing,
611more and more regions will be combined. The threshold set-
612ting is based on the users’ demand of the combination, e.g.,
613treetop leaves, main branch leaves, or all leaves. In the case
614of trees from Fig. 10, we show results of the SRC when dif-
615ferent thresholds are chosen as shown in Fig. 14.
616First, we set the cut-off threshold as large as 10.0, and
617trees are over-segmented into 141 regions as shown in
618Fig. 14a. Then, we reduce the threshold to 5.0, and segmen-
619tation results consist of 86 regions as shown in Fig. 14a.
620Small regions of tree leaves are combined. Next, we con-
621tinue to reduce the cut-off threshold to 2.0 and 1.0 as shown
622in Figs. 14c and 14d, respectively. At this time, the over-seg-
623mentation has been improved considerably. Most of the
624treetop leaves are grouped together. The second row of
625Figs. 14c and 14d shows the merging of the main branches.
626Finally, we set the threshold to 0.5 and achieve the segmen-
627tation results as shown in Fig. 10.
628The numerical value of the evaluation is shown in
629Table 2. The average accuracy of the experimental scenes
630shows that our method is more accurate than all the com-
631pared methods in terms of the Precision, Recall, ndiff and
632nF1. The evaluation shows that the bottleneck of the point
633cloud segmentation, i.e., the split of overlapping regions,
634can be addressed well by the proposed algorithm.

Fig. 11. The incompleteness of the data collection.

Fig. 12. Optimal-vector-field of each point cloud set. (a) HouseSet. (b)
BushesSet. (c) LamppostSet. (d) TreesSet. (e) PowerlinesSet.

Fig. 13. The change tendency of the energy function. (a) 2D figure of the
function when dr is small. (b) 3D figure of the function.
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636 In the algorithm implementation, there are four parameters,
637 namely the k to select the nearest neighbor points, the coeffi-
638 cient � to balance the terms in the optimal-vector-field cal-
639 culation, the coefficient g to balance the data term and
640 smoothness term in the graph-cut segmentation and � used
641 in the data term calculation. In our work, k is 20, � is 0.9, g is
642 0.1, and � is 0.1. For the purpose of the sensitivity analysis,
643 we range all parameters from �30 percent to +30 percent
644 with respect to the suggested values. The analysis is con-
645 ducted by floating one parameter and fixing the rest of the
646 parameters. The accuracy of the above-mentioned scenes is
647 shown in Fig. 15 using different parameters.
648 The optimal accuracy in the experimental scenes is
649 ndiff ¼ 90:81% and nF1 ¼ 92:59%, respectively. In each case,
650 the mean accuracy of ndiff and nF1 is no less than 89 and 90
651 percent, respectively.

652In tuning parameters, k and � are used for the optimal-
653vector-field procedure. k is usually a necessary parameter in
654the point cloud processing and is set empirically based on
655the point density. If the point density falls in 500 to 1000
656points/m2, k is suggested to be between 20 to 30. A larger
657density scene requires more points to obtain enough neigh-
658boring information. A smaller density scene requires fewer
659points to keep the neighboring information in the local
660region. A large k may cause the under-segmentation and a
661small k will increase the over-segmentation rate in results. �
662helps obtain the segmentation cue for providing the connec-
663tivity information. In the setting of parameters, users choose
664a proper k based on the density first. Then, tune � to obtain
665most connectivity regions from the input scene visually. In
666our graph-cut procedure, users are required to search g and
667� to segment planes. The setting of g depends on the connec-
668tivity region information. If one does not focus on small

Fig. 14. Segmentation results with SRC when different cut-off thresholds are chosen. (a) Cut-off threshold is 10.0. (b) Cut-off threshold is 5.0. (c) Cut-
off threshold is 2.0. (d) Cut-off threshold is 1.0. (e) Cut-off threshold is 0.5.

TABLE 2
Details of the Evaluation Accuracy

DataSet Assessment (%)
Methods

KMiPC KNNiPC 3DNCut MinCut PEAC OHC Proposed

HouseSet

Precision 80.65 81.58 87.98 75.75 94.62 84.10 91.68
Recall 49.26 71.13 77.15 85.49 68.83 72.23 86.40
ndiff 49.26 71.13 77.15 75.75 68.83 72.23 86.40
nF1 61.16 76.00 82.21 80.33 79.69 77.71 88.96

BushSet

Precision 76.06 85.26 81.07 90.55 94.54 95.00 97.43
Recall 84.31 88.94 85.27 87.89 88.86 94.73 93.67
ndiff 76.06 85.26 81.07 87.89 88.86 94.73 93.67
nF1 79.97 87.06 83.12 89.20 91.61 94.87 95.52

LamppostSet

Precision 80.10 82.33 79.11 65.52 94.36 86.31 90.45
Recall 78.84 88.96 73.42 78.46 73.85 82.72 90.16
ndiff 78.84 82.33 73.42 65.52 73.85 82.72 90.16
nF1 79.47 85.52 76.16 71.41 82.85 84.48 90.30

TreeSet

Precision 83.92 79.20 76.06 94.12 94.45 97.37 93.49
Recall 92.24 61.93 81.47 67.10 51.55 89.71 93.20
ndiff 88.92 61.93 76.06 67.10 51.55 89.71 93.20
nF1 87.88 69.51 78.67 78.35 66.70 93.38 93.34

PowerLineSet

Precision 64.62 91.61 83.21 74.34 85.50 96.77 99.48
Recall 81.72 88.98 79.14 96.56 84.93 93.37 90.63
ndiff 64.62 88.98 79.14 74.34 84.93 93.37 90.63
nF1 72.17 90.28 81.12 84.00 85.21 95.25 94.85

Average

Precision 77.29 84.00 81.49 80.06 91.37 91.91 94.50
Recall 77.69 79.99 79.29 83.10 73.60 86.55 90.81
ndiff 71.81 77.93 77.37 74.32 73.60 86.55 90.81
nF1 76.46 81.67 80.26 80.66 81.72 89.14 92.59

XU ET AL.: PLANE SEGMENTATION BASED ON THE OPTIMAL-VECTOR-FIELD IN LIDAR POINT CLOUDS 9
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669 pieces of planes in a large-scale scene, we suggest increasing
670 g, which will make the connectivity region smoother. The
671 evaluation shows that the algorithm is quite stable when � is
672 small. Fig. 15 demonstrates that the output of our model
673 can be stable to different input parameters in the suggested
674 range. The spacing between points in the optimal-vector-
675 field formulation is initialized as Dx ¼ 1 m, Dy ¼ 1 m and
676 Dz ¼ 1 m and the time step is set as Dt ¼ 0:18 based on the
677 convergence rule.
678 The setting of parameters is procedure-by-procedure.
679 Although a combination of variable changes can be better,
680 only a proper � will provide a better segmentation cue. In
681 the point cloud processing, the input scene consists of
682 objects different in size. Users may need to obtain small
683 planes from indoor scenes for a fine segmentation or to
684 achieve large building planes from outdoor scenes for 3D
685 modeling, which depends on users’ demand. Therefore, we
686 obtain the optimal � and g by the grid searching.
687 Experiments were done on a Windows 10 Enterprise 64-
688 bit, Intel Core i7-6900k, 3.20 GHz processor with 64 GB of
689 RAM, and computations were carried on Matlab. The cost
690 time for each algorithm is shown in Table 3. In the last col-
691 umn, the first part is the time cost of the optimal-vector-field
692 and the second part is for the segmentation. In comparison,
693 only KMiPC andKNNiPCperform better than ours. 3DNCut
694 is slower than the proposed method when the scale of the
695 scene is large. For MinCut, the human-computer interaction
696 is very time-consuming. The organization of point clouds in

697PEAC is not counted in Table 3, which will cost lots of time.
698OHC is faster than ours because they choose a sampling
699strategy to reduce the time cost, which will decrease the seg-
700mentation accuracy.

7016.3 Performance on Different LiDAR
702Point Cloud Sets

703This section shows our performance on different LiDAR
704point clouds. First, we will demonstrate the proposed plane
705segmentation from MLS data. The experiment data are
706point clouds of a common street scene as shown in Fig. 16.
707There are 12,181,900 points in this scene and the road is
708about 1 km long. The challenges in this experiment include
709(1) the incompleteness of points, (2) the presence of noise
710and occlusions, and (3) the large volume of points. The seg-
711mentation is performed in the area which is 30 meters to the
712center of the road, and our results are shown in Fig. 17. As
713shown in the given four close-views, different planes are
714visualized in different colors.
715Two points are worth noting in MLS data:

7161) The outliers removal is achieved by computing the
717mean m and standard deviation d of k-nearest neigh-
718bor distance. Points that fall outside m
 d will be
719regarded as outliers as shown in Fig. 18a and
720removed before the segmentation.
7212) In MLS data, the density of ground points is much
722larger than off-ground points. Therefore, we extract
723ground to reduce the volume of input points using
724the elevation difference [48] as shown in Fig. 18b.
725Second, we demonstrate the plane segmentation on ALS
726data. The experiment dataset is from Dublin project (doi:
72710.17609 / N8MQ0N). This dataset is collected by aerial

Fig. 15. Sensitivity analysis. (a) Mean of ndiff and nF1 is 90.49 and 92.24
percent, respectively, when k is floating from �30 to +30 percent. (b)
Mean of ndiff and nF1 is 89.11 and 90.60 percent, respectively, when �
is floating from �30 to +30 percent. (c) Mean of ndiff and nF1 is 90.40
and 91.97 percent, respectively, when g is floating from �30 to +30 per-
cent. (d) Mean of ndiff and nF1 is 90.81 and 92.59 percent, respectively,
when � is floating from �30 to +30 percent.

TABLE 3
Execution Time of Each Algorithm

Dataset Number of
points

Density
(points/m2)

Time cost (seconds)

KMiPC KNNiPC 3DNCut MinCut PEAC OHC Proposed

HouseSet 73899 821 0.72 0.76 61.67 15.99 4.92 10.63 6.65+10.45
BushesSet 7046 793 0.04 0.04 0.60 3.16 0.24 1.63 0.40+1.61
LamppostSet 52403 4645 0.46 0.21 29.96 31.92 3.02 9.91 2.10+9.82
TreesSet 257469 858 1.86 1.84 520.14 122.21 111.32 35.96 16.15+60.47
PowerlinesSet 154307 1836 1.07 0.58 234.35 139.53 33.65 16.23 9.75+35.07

Fig. 16. The input street scene with MLS data.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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728 laser scanning (ALS) in the form of a 3D point-cloud (LAZ)
729 and imagery data. Data were obtained at an average flying
730 altitude of 300 meters. The main challenge in this experi-
731 ment is the incompleteness of the object information. In
732 ALS data, the facades of buildings are missing due to the
733 fact that the laser beam is scanned from top to bottom. As
734 shown in Fig. 19, the first row shows 2D images of the
735 experimental scenes and the second row shows the corre-
736 sponding 3D-point data. Fig. 20 shows our segmentation
737 results. Fig. 19a shows that sedans are usually in only one

738plane. Treetop leaves are grouped into one unit as shown in
739Figs. 20a and 20b based on the proposed SRC algorithm.
740Fig. 20c shows that the proposed method is adaptive to dif-
741ferent geometric surfaces. From the formulation of the opti-
742mal-vector-field, all building tops and the ground have the
743same surface normal. If the building tops are in different
744elevations, we can split them easily as shown in the regions
745#1 to #5 in Fig. 21. However, since the ALS is scanned from
746top-down, the magnitude of the optimal-vector-field is con-
747sistently low in almost all places, surface normals have the

Fig. 17. Plane segmentation from MLS data.

Fig. 18. Illustration of points that are worth noting in MLS data. (a) Out-
liers removal. (b) Extracted ground points.

Fig. 19. Input scenes with ALS data. (a) 2D imageries of input scenes.
(b) 3D ALS point clouds of input scenes.

XU ET AL.: PLANE SEGMENTATION BASED ON THE OPTIMAL-VECTOR-FIELD IN LIDAR POINT CLOUDS 11
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749 ing, it is difficult to split connected planes as shown in the
750 regions #a to #d in Fig. 21. Although there are four different
751 planes in the region #1 in Fig. 21, the proposed plane seg-
752 mentation regards them as one large plane.

753 6.4 Application to the Multi-Object Segmentation
754 and Detection

755 In order to show the benefit of the proposed algorithm to the
756 individual object segmentation, this subsection shows how
757 to merge planes into complete objects based on the compati-
758 bility of information, including the intensity and color. In the
759 object segmentation, we do not have any prior knowledge of
760 the input scene, e.g., the number of objects or the recognition
761 of objects. Therefore, we have to analyze the compatibility of
762 neighboring information, e.g., property and structure. The
763 compatibility of the property (e.g., the material, color, and
764 texture), which results in the discontinuity of the gray value,
765 is commonly used in the 2D image segmentation. The com-
766 patibility of the structure is mostly used for the segmentation
767 of objects with a specific shape, such as the hedgehog shape
768 segmentation [49] and the thin structure estimation [50].
769 Because the topology determination from point clouds is still
770 a challenging task [51], we did not use the structure compati-
771 bility for the segmentation. In the merging of planes, two
772 regionswill be combined if

fA � fB

		 		 < T; (19)

774774

775 where fA and fB are the mean value of a plane A and B,
776 respectively, using specific compatibility information. T is
777 the user-defined threshold for the grouping. The following
778 section shows the performance of merging planes into com-
779 plete objects using different compatibility information.

780First is the merging of planes from MLS data using the
781color compatibility. The color information (RGB) is obtained
782by the registration of LiDAR point clouds and images. In
783our work, we transform RGB into HSV (Hue, Saturation,
784Value) space [52]. Hue is defined as an angle in the range
785from 0 to 2P. The threshold T used in the merging is 10�.
786The merging result is shown in Fig. 22. Each bounding box
787in Fig. 22 means the combination result of an individual
788object. Planes from a building are merged into one individ-
789ual object. We obtain 74/74 buildings from the test street
790scene using the compatibility of color information, which is
791a promising result in the segmentation of MLS data. A
792close-view of a common traffic scene in the segmentation is
793shown in Fig. 23. We segment eight individual objects accu-
794rately, including two vehicles, two groups of vegetation,
795two human beings, one traffic light, and one building. The
796problem of the merging based on the color information is
797that since the color is assigned based on the registration
798between images and point clouds, the color can be unreli-
799able in the connectivity region.
800Second is the merging of planes using the intensity com-
801patibility. The intensity information contains only one chan-
802nel and is scaled to [0,255]. In the merging process, T is set
803as 20. Our results segment multiple vehicles in a parking lot
804as shown in Fig. 24a and obtain different roofs from a block
805scene as shown in Fig. 24c. Errors appear in the segmenta-
806tion of trees as shown in Fig. 24b, i.e., spatially close trees
807are grouped together. The problem of the merging based on
808the intensity information is that the intensity highly
809depends on the collection system and has to be calibrated
810thoroughly before the merging [53].
811For the comparison, we choose the well-known dataset
812Semantic3D [54], which is the largest available LiDAR data-
813set with over billion points from a variety of urban and rural
814scenes. Each point has RGB and intensity values (the latter
815of which we do not use). There are eight classes in the
816benchmark, namely man-made ground: mostly pavement
817and road, natural ground: mostly grass, high vegetation:
818trees and large bushes, low vegetation: flowers or small
819bushes which are smaller than 2 m, buildings: tenements
820and facades, hard scape: a class with for instance garden
821walls and fences, scanning artifacts: artifacts caused by
822dynamically moving objects and cars. The comparison con-
823tains SnapNet_[55], SEGCloud [56], SPGraph [57], shell-
824net_v2[58], RGNet [59], KP-FCNN [60], OctreeNet_CRF
825[61], GAC [62] and ours. Performance is shown in Fig. 25
826and evaluated based on the per-class accuracy (Acc) and
827average accuracy, which is defined as the proportion of

Fig. 20. Plane segmentation from ALS data. (a) Parking lot scene. (b) Park scene. (c) Street block scene.

Fig. 21. Plan segmentation results of roofs at different elevations.
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828 correctly segmented points, as shown in Table 4. Their accu-
829 racy is based on the authors’ published work. The classifica-
830 tion of our segments is by setting thresholds on the volume,
831 elevation, and normal vectors at points.
832 Although our unsupervised classification step does not
833 require the training process, the accuracy highly depends
834 on the prior knowledge of objects, such as the volume, ele-
835 vation, and normal vectors at points. The procedure of the
836 classification is from bottom to top. First, the distinguish-
837 ment of the ground and non-ground regions is based on

838elevation information. Second, non-ground objects consist
839of planes located around the ground points’ boundary are
840recognized as buildings. Planes are indicated by the normal
841vector information at points. Third, the classification of the
842hard scape, cars, or vegetation regions from above-ground
843points is solved by using the template matching approach.
844We formulate templates for the vehicle and vegetation by
845different cubes and poles respectively and try to match the
846template with the non-ground points to classify cars and
847trees. The matching process requires users to keep adding
848samples into templates to obtain a threshold range for each
849class. This is because objects are often incomplete due to
850occlusion in the data collection. The classification is imple-
851mented using a decision tree strategy based on the achieved
852thresholds automatically. The rest of the non-ground objects
853are regarded as points from the hard scape.
854Our misclassification points are from the overlapping
855regions between objects and ground points. As shown in
856Table 4, the accuracy of our method is higher than the
857above-mentioned methods if most of the components from
858the input scene have an accurate vector-field, e.g., cars and
859plane regions. Results show that the proposed method

Fig. 22. Merging of planes from MLS data.

Fig. 23. Details of merged objects from MLS data.
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860 performs better on smooth surfaces and achieves the highest
861 average accuracy, this is because the vector-field of smooth
862 surfaces is calculated well in the detection of the intersection
863 between different planes than vegetation regions.

864 6.5 Advantages and Limitations

865 The above experiments show that our method achieves the
866 plane segmentation accurately and succeed in detecting the
867 overlapping intersections. Compared with the work which
868 applied graph-cut directly based on the color consistency,
869 e.g., [27], our advantage is that we do not require the color
870 information in the segmentation. Our segmentation depends
871 on the coordinate only. The color in point clouds is assigned
872 based on the registration between images and point clouds,

873which is a not well-addressed task and can be unreliable in
874connectivity regions. Compared with the work which
875applied graph-cut to point clouds based on the foreground
876and background separation, e.g., [28], we do not need
877human-computer interaction. Compared with the work
878which applied normalize-cut to the point cloud segmenta-
879tion, e.g., [7], we achieve the segmentation using two labels
880only, therefore, we do not need to initialize the number of tar-
881gets. Compared with the work which obtains planes based
882on the merging of points or supervoxels, e.g., [46], we do not
883have the iterative merging process and succeed in ensuring
884the optimization by a developed binary segmentation model.
885Since the graph-cut is weak in the segmentation of thin struc-
886tures, which may cause problems in the connectivity region

Fig. 24. Merging of planes from ALS data. (a) Parking lot scene. (b) Park scene. (c) Street block scene.

Fig. 25. Detection of different objects. (a) Input point clouds. (b) Segmentation results. (c) Detection results.

TABLE 4
Comparison With the Object Segmentation Algorithms

Method Average man-made
ground

natural
ground

high
vegetation

low
vegetation

buildings hard
scape

scanning
artifacts

cars

SnapNet_ 0.591 0.820 0.773 0.797 0.229 0.911 0.184 0.373 0.644
SEGCloud 0.613 0.839 0.660 0.860 0.405 0.911 0.309 0.275 0.643
SPGraph 0.732 0.974 0.926 0.879 0.440 0.932 0.310 0.635 0.762
shellnet_v2 0.693 0.963 0.904 0.839 0.410 0.942 0.347 0.439 0.702
RGNet 0.747 0.975 0.930 0.881 0.481 0.946 0.362 0.720 0.680
KP-FCNN 0.746 0.909 0.822 0.842 0.479 0.949 0.400 0.773 0.797
OctreeNet_CRF 0.591 0.907 0.820 0.824 0.393 0.900 0.109 0.312 0.460
GAC 0.708 0.864 0.777 0.885 0.606 0.942 0.373 0.435 0.778
Ours 0.754 0.985 0.965 0.821 0.442 0.905 0.245 N/A 0.914
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887 segmentation, one may have to decrease the � to make the
888 connectivity region thick.
889 Compared with deep learning methods, we obtain a better
890 performance on the scene of cars and ground points, because
891 of their accurate optimal-vector-field. The drawbacks lie in
892 the detection of vegetation, due to the fact that the vector-field
893 there ismassive and scatter.Wedonot require a training proc-
894 essing in the segmentation, but the threshold setting is neces-
895 sary for the purpose of the classification.
896 The similar work of using the vector field for the geome-
897 try analysis has been used in [63]. We clarify the difference
898 in this subsection. They identify parts of the shape by defin-
899 ing deformation energy on the shape and find a decomposi-
900 tion of the shape. However, they do not show how to split
901 different surfaces and planes. In this paper, the vector field
902 is optimized to cue the intersection regions of planes, which
903 is new and effective to the plane segmentation. However,
904 (1) since the segmentation is in the primitive-level, we are
905 required to add the merging processing to obtain complete
906 objects; (2) the algorithm asks for a line fitting process to
907 deal with the linear objects. e.g., power lines and curb
908 edges; our accuracy is degraded in the segmentation of
909 trees, due to the non-uniform surface there; the proposed
910 method is not suitable for the fine segmentation, because
911 the optimal-vector-field of small planes can be affected by
912 outliers easily; (3) points from the intersection regions are
913 missing in the segmentation results, which degrades the
914 completeness accuracy from the proposed algorithm.

915 7 CONCLUSION

916 This paper proposes a new strategy of the plane segmenta-
917 tion for LiDAR point clouds. The algorithm mainly has two
918 phases to add both the local and global constraints for the
919 segmentation. First, a new optimal-vector-field is formulated
920 to detect the plane intersections in a local phase. Second, the
921 input scene is divided into the connectivity and non-connec-
922 tivity region by a single graph-cut model in a global phase.
923 Segmentation cues are inferred by the formulated optimal-
924 vector-field effectively and used for the plane segmentation.
925 Experiments show that the proposed segmentation works
926 accurately on both mobile and airborne LiDAR point clouds
927 with an average precision of 94.50 percent and the recall of
928 90.81 percent. The achieved plane segmentation results can
929 be easily merged into complete objects based on the color
930 and intensity information, which are better than state-of-the-
931 art supervised learningmethodswith an average accuracy of
932 75.4 percent.
933 It could be expected that improving plane intersection
934 detection will result in increasing the accuracy of plane seg-
935 mentation and individual object detection. Besides, 3D
936 urban scene understanding, e.g., 3D object detection and
937 classification, will increasingly rely on 3D laser scanning
938 data, hence, further considerable research is required to
939 address the issue of merging complex components, e.g.,
940 incomplete or sparse objects.
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