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An Optimal Hierarchical Clustering Approach to
Mobile LiDAR Point Clouds

Sheng Xu , Ruisheng Wang , Hao Wang, and Han Zheng

Abstract— This paper aims to propose a new optimal hier-
archical clustering approach to 3D mobile light detection and
ranging (LiDAR) point clouds. The hierarchical clustering is
performed on unorganized point clouds based on a proximity
matrix that consists of a distance term and a direction term.
In the dissimilarity calculation of two clusters, a pair of points
from each of two clusters is selected, respectively, and Euclidean
distances between the points are employed to define the distance
term. The direction term is obtained by the differences of normal
vectors at chosen points. The main contribution is that the cluster
combination in the hierarchical clustering is optimized by a
point-based graph model. The cluster combination is formulated
as a problem of matching, optimized by finding the minimum-cost
perfect matching in a bipartite graph. The results show that
the proposed hierarchical clustering method succeeds in seg-
menting object from point clouds without any human–computer
interaction and outperforms the state-of-the-art segmentation
approaches in terms of completeness and correctness.

Index Terms— Hierarchical clustering, MLS, segmentation,
bipartite graph.

I. INTRODUCTION

SEGMENTATION from point clouds collected by laser
sensors plays an important role in the environmental

analysis, 3D modeling and object tracking. Segmentation is the
process of partitioning input data into multiple regions. Seg-
mentation results can be divided into three levels, namely the
supervoxel level [1], region level [2] and object level [3], [4].
Nowadays, segmentation results have been effectively used
in applications related to the navigation of a self-driving car,
such as the curb extraction [5], pedestrian detection [6], street
light poles localization [7] and simultaneous localization and
mapping (SLAM) [8]. The key challenge in segmentation of
point clouds is the split of overlapping regions. Due to the fact
that point clouds are noisy, uneven and unorganized i.e. lack
of topology, overlapping regions are difficult to be detected.

This paper aims to propose a new optimal hierarchical
clustering (OHC) approach to mobile LiDAR (Light Detection
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And Ranging) point clouds. The approach uses the matching
in a bipartite graph to combine regions, and the optimal cluster
combination is solved by the minimum-cost perfect matching
in the point-based graph. In this paper, a region is regarded
as a component of an object instance. Points from one region
should not belong to different object instances. For example,
one building instance may include one or several regions.

This paper is organized as follows. Section II reviews merits
and demerits of the related segmentation methods. Section III
describes the overall idea of the optimal hierarchical cluster-
ing (OHC) algorithm. Section IV focuses on the determination
of the dissimilarity between clusters to form the proximity
matrix. Section V uses the matching in a bipartite graph
to find the combination solution and achieves the optimal
combination by solving the minimum-cost perfect matching.
Section VI shows experiments to evaluate the performance
of the proposed method. Section VII demonstrates merging
results of regions and discusses complexity of the proposed
OHC. Conclusions are outlined in Section VIII.

II. RELATED WORK

In this paper, the segmentation is related to the split of
general instances from an input scene, which is different from
the specific instance extraction or detection. In the object
extraction, commonly used methods are rule-based. In the
work of Zhang et al. [5], they segment road curbs based on
predefined rules, including the planar surface of roads and
the elevation difference between curbs and roads. In the work
of Li et al. [6], the detection of pedestrian is based on the
density requirement and geometric shape. In the work of
Wu et al. [7], the extraction of poles is based on the feature
extraction, including pole features and geometric information.
Those methods are difficultly used in the segmentation of
general object instances. Related work for the multi-object
segmentation is shown below.

In the work of Douillard et al. [9], the authors propose
a Cluster-All method for dense point clouds and achieve
a trade-off in terms of simplicity, accuracy and computa-
tion time. The grouping process in Cluster-All is based on
the k-nearest neighbors approach. The principle of KNNiPC
(k-nearest neighbors in point clouds) is selecting a number
of points for a given point based on the nearest Euclid-
ean distance and assigning them the same index. To avoid
under-segmentation results, the variance and mean of Euclid-
ean distances of the points within a group are restricted to be
less than a preset threshold. A similar approach is shown in
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the work of Klasing et al. [10]. The authors present a radially
nearest neighbors strategy to bound the region of neighbor
points, which helps enhance the robustness of the neighbor
selection. The KNNiPC works well in different terrain areas
and does not require any prior knowledge of object locations.
The problem is that results of KNNiPC highly depend on
the selection of a “good value” for k which is the number
of selected nearest neighbor points. The setting of k is very
sensitive to the point cloud density. A large k fails to split
overlapping regions between different object instances and a
small one may cause a heavy over-segmentation.

In the point cloud segmentation, the challenging is to sep-
arate two overlapping regions. In the method of Yu et al. [3],
the authors propose an algorithm for segmenting pole-like
objects from mobile LiDAR point clouds. In order to separate a
cluster with more than one object, the authors add the elevation
information to extend the 2D normalized-cut method [11].
The 3DNCut (3D normalized-cut) partitions input points into
two disjoint groups by minimizing the dissimilarity within
each group and maximizing the dissimilarity between different
groups. 3DNCut obtains an optimal solution of the binary seg-
mentation, which demonstrates a promising method for mobile
LiDAR point cloud segmentation. The shortcoming is that the
number of regions has to be preset before the segmentation.
In the method of Golovinskiy et al. [4], the authors present
a min-cut based method (MinCut) for segmenting objects
from point clouds. The MinCut partitions input points into
two disjoint groups, i.e. background and foreground, by min-
imizing Euclidean distances between graph points and the
source/sink node. The solution cut, which is used to separate
the input scene into background and foreground, is obtained by
the graph cut method [12]. The MinCut obtains competitive
segmentation results in terms of the optimum and accuracy.
However, users have to set the center point and radius for
each object. Recently, Su et al. [13] propose a segmentation
method for terrestrial LiDAR scans of industrial sites con-
taining piping systems. Their split and merge procedures first
separate voxel points into spatially unconnected components,
and then intelligently merge these components using a series
of connectivity criteria across voxels. However, the space com-
plexity is high and the merging procedure depends on a series
of connectivity criteria (proximity, orientation, and curvature),
which is difficult calculated in a general traffic scene. In the
work of Lin et al. [14], they formalize segmentation as a subset
selection problem and develop an heuristic algorithm to solve
the selection problem. Their extracted supervoxels preserve the
object boundaries and structures with a higher boundary recall
and lower under-segmentation error. The problem is that the
supervoxel formulation in vegetation is difficult because the
boundary of vegetation is blurred.

Clustering is a well-known technique in data mining. The
commonly used is the k-means approach, which has been used
for the point cloud in [15], [16]. The idea of KMiPC (k-means
in point clouds) is to partition points into different sets to
minimize the sum of distances of each point in the cluster to
the center. In the work of Lavoué et al. [15], the authors use
k-means for the extraction of ROI (region of interest) from
mesh points. The problem is that KMiPC is easy to produce

excessive segments as indicated in [15]. Moreover, the KMiPC
needs to set the number of clusters and fails to segment
overlapping regions [16]. In the work of Feng et al. [17],
the authors propose a planar region extraction method based
on the agglomerative clustering approach (PEAC) and suc-
ceed in segmenting regions from point clouds efficiently. The
shortcoming is that input point clouds are required to be well-
organized.

The accuracy of KMiPC and KNNiPC is sensitive to point
cloud density and is decreased in the overlapping regions
between different object instances. The accuracy of 3DNcut
and MinCut depends on the scene and can be low when the
number of objects is large. The accuracy of PEAC relies on
the geometric information and is reduced when objects have
complex shapes. In this paper, we propose a new hierarchical
clustering algorithm for LiDAR point clouds. The cluster
combination is optimized by solving the minimum-cost perfect
matching in a bipartite graph. The proposed algorithm does not
require the initial number of clusters or the location of objects,
which is significant in the point cloud clustering.

III. THE OVERALL IDEA OF THE OPTIMAL HIERARCHICAL

CLUSTERING (OHC)

In this paper, the proposed OHC is based on a bottom-up
strategy to group regions. It starts with a cluster set, and
each set consists of only one point. Then, it measures the
dissimilarity between clusters and combines similar clusters
into a new cluster.

The input point set is P = {p1, p2, . . . , pn}, and the resul-
tant cluster set is C = {c1, c2, ...ci , . . . , c j , . . . , ct }, where n
is the number of points in P and t is the number of clusters
in C . Each cluster ci contains one or more points from P ,
and ci ∩ c j is Ø under i �= j . The proximity matrix is PM,
which is used to measure the dissimilarity between clusters
in C . The goal of the proposed OHC is to optimize the set
C , so that each ci ∈ C is a cluster of a region. The objective
function for the minimization is

arg min
�

∑

{ca,cb}∈�

PM(ca, cb), (1)

where � is the set of the neighboring clusters to be com-
bined. The matrix element PM(ca, cb) means the dissimilarity
between the cluster ca and cb.

In the initialization, each cluster ci contains only one point
from P , and the size of the proximity matrix is t × t . In the
proposed OHC, similar clusters are combined into one cluster
and the value of t will be reduced during the clustering
process. Key steps are the determination of the proximity
matrix and the optimization of the cluster combination, which
will be discussed in the following sections. The corresponding
flowchart is shown in Fig.1. The cluster set Ci+1 is the update
of Ci based on the optimal cluster combination. At the end of
the algorithm, the converged cluster set C is regarded as the
clustering result.

IV. DETERMINATION OF THE PROXIMITY MATRIX

For a set C with t clusters, we formulate a t × t symmetric
proximity matrix. The (i, j)th element of the matrix means
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Fig. 1. The flowchart of the proposed OHC approach.

the dissimilarity between the i th and j th cluster (i, j =
1, 2, . . . , t). During the hierarchical clustering, two clusters
with a low dissimilarity are preferred to be combined into
one cluster. In this paper, points from a region are assumed
to be spatially close, and normal vectors at points from local
planes are similar. The calculation of the dissimilarity contains
a distance measure α

(
pi , p j , ci , c j

)
and a direction measure

β
(

pi , p j , ci , c j
)
.

The density of LiDAR points relies on the scanning pattern
and the distance to the sensor, therefore, Euclidean distances
between points are various in different regions. In order to
improve the robustness of the distance calculation, we normal-
ize Euclidean distances between points. The normalization is
achieved by using a scalar value. Commonly used filters for
this purpose are the maximum, minimum and median filters.
The maximum filter is sensitive to clusters with outliers. The
minimum filter achieves 0 when there exist duplicate points in
a region. In the calculation of α

(
pi , p j , ci , c j

)
, the required

scalar values f (ci ) and f (c j ) are based on the median filter
Med , which is defined as Eq.(2).

f (ci ) = Medp∈ci { min
p′∈ci ,p′ �=p

d(p, p′)} (2)

For example, if one has a cluster c0 = {p1, p2, p3} and
the minimal distance from each point pi ∈ c0 to other
points within c0 is di , f (c0) is obtained by the median value
of {d1, d2, d3}. It is worth noting that if there is only one
point in the cluster ci , f (ci ) will be 1. The distance term
α

(
pi , p j , ci , c j

)
is formed as

α
(

pi , p j , ci , c j
) = d(pi , p j )

max( f (ci ), f (c j ))
(3)

where d(pi , p j ) measures Euclidean distances between two
points. Clusters ci and c j are two different clusters in the
set C . Points pi and p j are obtained by

arg min
(pi ,p j )

d(pi , p j ) : pi ∈ ci , p j ∈ c j (4)

The direction measure is based on the normal vector infor-
mation. The normal vector at a point is approximated as the
normal to the surface estimated by its k-nearest neighborhood
points. Assuming that there are k points in the estimation,
based on singular value decomposition (SVD) method one has

⎡

⎢⎢⎣

x1 y1 z1
x2 y2 z2
. . . . . . . . .
xk yk zk

⎤

⎥⎥⎦ = Dk×3 = Uk×kSk×3V�
3×3 (5)

where D is the input matrix decomposed into the matrices
U, S and V. The column vector V| in V, which corresponds
to the smallest eigenvalue in the decomposition, is chosen
as the normal vector at the given point. The direction term
β

(
pi , p j , ci , c j

)
is formed as

β
(

pi , p j , ci , c j
) = 1 −

∣∣∣V|(pi) · V|(p j )
∣∣∣ (6)

where V|(pi ) and V|(p j ) are normal vectors estimated from
the k-nearest neighbors of the point pi and p j , respectively.
Points pi and p j are obtained by Eq.(4).

In our work, exterior points are defined as the outer surface
points of object instances, and interior points are the rest
of points. If two objects are connected with each other,
objects’ exterior points are potential to be the overlapping
points between different objects. The proximity matrix PM
is calculated by Eq.(7), shown at the bottom of the next page.
λ is a user-defined coefficient to balance α

(
pi , p j , ci , c j

)
and

β
(

pi , p j , ci , c j
)
. If both pi and p j are interior points, which

are assumed to be in the same cluster, the calculation of PM
is based on Eq.(7a); if both of them are exterior points, which
can be in different clusters, the calculation of PM is based
on Eq.(7b); in all other conditions, the calculation of PM is
based on Eq.(7c). The dissimilarity between two clusters is
small if they are spatially close or they have consistent normal
vectors at the given points obtained by Eq.(4). When both
two clusters consist of interior points, the dissimilarity will be
dominated by the distance measure. When both two clusters
consist of exterior points, the direction measure dominates
their dissimilarity.

In the work of Chaudhuri and Chaudhuri [18], the authors
develop a detection approach to distinguish border points
in a dot pattern. The assumption is that border points are
not surrounded by other points in all directions and the
authors detect border points efficiently in synthetic point
clouds. However, mobile LiDAR point clouds are complex,
uneven and incomplete. The threshold to determine border
points is required to be adaptive for different regions. Another
commonly used method for the shape calculation is called 3D
α-shape [19]. It succeeds in recovering the shape of
non-convex and even non-connected sets in 3D point clouds.
However, since MLS point clouds are noisy and uneven and
3D α-shape is based on distances between points in deciding
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Fig. 2. Illustration of the local 3D convex hull test. (a) The testing of a
vertex v0. (b) A close-up view of a local 3D convex hull.

Fig. 3. Results of the exterior point extraction. (a) Input point clouds.
(b) Exterior points from our method.

which points to connect by triangles or lines, it is relatively
inappropriate to use this method in our non-uniform MLS
point cloud sets. Therefore, we propose a local 3D convex
hull testing method to mark the exterior and interior points
from input data. The proposed method proceeds as follows:
(1) initialize all input points as unlabeled points; (2) check
if a point is not labeled as an interior point; (3) pick up its
k-nearest neighbor points to construct a local 3D convex hull,
and the value of k is the same as the value in the normal vector
calculation; (4) label all points inside the hull as interior points;
(5) repeat (2)-(4) until all input points are tested; (6) mark the
rest unlabeled points as exterior points.

To implement the testing, a local 3D convex hull will be
formed using four vertices, namely v1, v2, v3 and v4, as shown
in Fig.2(a). The target is to test if a vertex v0 is an interior
point or not. As shown in Fig.2, the vector g0 = (v0 − v1)
can be represented by the sum of vectors g1 = (v2 − v1),
g2 = (v3 − v1) and g3 = (v4 − v1) as shown in Eq.(8).

g0 = u × g1 + v × g2 + w × g3 (8)

Based on Eq.(8), one can conclude that if the coefficient
u ≮ 0, v ≮ 0, w ≮ 0 and u + v + w < 1, v0 will be inside

the 3D convex hull. The testing relies on values of u, v and
w, which can be solved efficiently by

[u, v,w]� = [
g1, g2, g3

]−1 · g0 (9)

If v0 is inner the 3D convex hull, it will be labeled as an
interior point. Each point from the input will be selected as a
vertex and tested in a local convex hull constructed by its
k-nearest neighbor points. In building the 3D convex hull,
v1 is chosen as the furthest point to v0, v2 is the point to
obtain the largest projection of g1 on the g0 direction (i.e.
arg max

v2
(|g1| · cos < g1, g0 >)), v3 is the furthest point to

the line containing v2 and v1, and v4 is the furthest point
to the plane containing v1, v2 and v3. A close-up view of
a local 3D convex hull is shown in Fig.2(b). To take an
example, input point clouds are shown in Fig.3(a), including a
synthetic pyramid point set and a vegetation point set. Fig.3(b)
demonstrates the exterior points and interior points obtained
from our method. All surface points from the pyramid point
set are successfully labeled as exterior points. Although the
vegetation point set is uneven, most surface points are marked
as exterior points effectively.

In the calculation of PM, there is only one point in each
cluster and it is easy to calculate the proximity matrix by
Eq.(7) in the first step. When there is more than one point
in a cluster, the user has to find the correct pi and p j based
on Eq.(4) for the calculation of PM(ci ,c j ). Then, re-calculate
the distance term and the direction term based on Eq.(3) and
Eq.(6), respectively.

V. CLUSTER COMBINATION BASED ON THE

MINIMUM-COST PERFECT MATCHING

Usually, the hierarchical clustering uses a greedy strategy
to deal with the cluster combination. The idea is to find two
most similar clusters based on the proximity matrix first, then
combine them into one cluster. The greedy strategy is easy to
incur a local optimization. Hence, this section aims to optimize
the cluster combination globally.

The bipartite graph is denoted by G = {
Vx , Vy, E

}
, where

the node set Vx = {c1, c2, . . . , ci , . . . , cn} describes
the current clusters of points in the set C and Vy

shows clusters for the combination. In the hierarchical
clustering, any two clusters can be combined into one
cluster, therefore, we let Vy = Vx . There is no edges
inside Vx or Vy and the edge between ci ∈ Vx and
c j ∈ Vy is denoted as ei, j : ci ↔ c j . The set E =
{e1,1, . . . . , e1,n, e2,1, . . . . , e2,n, . . . , ei, j , . . . , en,1, . . . , en,n}
shows all edges in G. The above-modeled bipartite graph G

is shown in Fig.4.

PM(ci , c j ) = λ − 1

λ
α

(
pi , p j , ci , c j

) + 1

λ
β

(
pi , p j , ci , c j

)
, (7a)

PM(ci , c j ) = 1

λ
α

(
pi , p j , ci , c j

) + λ − 1

λ
β

(
pi , p j , ci , c j

)
, (7b)

PM(ci , c j ) = 1

2
α

(
pi , p j , ci , c j

) + 1

2
β

(
pi , p j , ci , c j

)
, (7c)
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Fig. 4. The modeled bipartite graph G = {
Vx , Vy , E

}
.

Fig. 5. Clustering results obtained by the perfect matching. (a) The
combination solution: {c1}, {c2, c3}, {c3, c4}, {c4, c2}, {c5, c6}. (b) The com-
bination solution: {c1, c2}, {c3, c4}, {c5, c6}. (c) The combination solution:
{c1}, {c2}, {c3}, {c4}, {c5}, {c6}.

In graph theory, the matching in a bipartite graph is a set of
edges without common vertices. Assuming that a cluster can
be combined with no more than one cluster at each hierarchy,
the cluster combination can be solved by the perfect matching
in the bipartite graph G. The perfect matching means that
every cluster ci ∈ Vx is connected with a cluster c j ∈ Vy .
In the perfect matching, the edge ei, j : ci ↔ c j , which is
between ci ∈ Vx and c j ∈ Vy , means that if i �= j , the cluster
ci and c j will be combined into one cluster, otherwise ci

is not chosen for the combination at the current hierarchy.
For example, the result of the hierarchical clustering can be
determined by a perfect matching as shown in Fig.5.

Eq.(1) aims to find the optimal cluster combination which
achieves the minimum sum of the dissimilarity in the cluster-
ing. This task can be achieved by solving the minimum-cost
perfect matching in G.

The capacity of the perfect matching in G is denoted by
Cost P M which determines the sum cost of the combination.
The Cost P M is calculated as

Cost P M =
∑

ei, j ∈�

PM
(
ci , c j

)
, ei, j : ci ↔ c j (10)

where � is the set of edges from the perfect matching.
PM(ci , c j ) aims to measure the cost of merging those con-
nected clusters in the perfect matching.

The goal is to find the minimal Cost P M for the optimal
combination. It is worth noting that PM(ci , ci ) is weighted
by a user-defined cut-off distance SM . Detail steps of the
proposed OHC via the minimum-cost perfect matching are
shown below.

The input point set P is {p1, p2, p3, . . . , pn}. The goal is
to optimize a cluster set C to achieve that each cluster in C
represents an object region.

Step 1: Initialize the vertex matrix Vx as {c1, c2, . . . , cn} by
setting c1 as {p1}, c2 as {p2},…, and cn as {pn};

Step 2: Let Vy be equal to Vx by copying cluster elements
from Vx to Vy .

Fig. 6. The dendrogram of the hierarchical clustering.

Step 3: Connect the cluster ci ∈ Vx with c j ∈ Vy to form
the edge ei, j , where 1 ≤ i, j ≤ n;

Step 4: Compute the proximity matrix PM using Eq.(7);
Step 5: Optimize Eq.(10) by solving the minimum-cost

perfect matching in G = {Vx , Vy, E} using the Kuhn-Munkres
algorithm [20];

Step 6: Combine every connected clusters into one cluster;
Step 7: Update Vx ;
Step 8: Repeat steps 2–7, until Vx converges. Finally,

the expected cluster set C is assigned by the converged Vx .
Steps 1–3 aim to model a bipartite graph G = {Vx , Vy, E}.

Edges are initialized as a full connection graph between Vx

and Vy , i.e. each ci ∈ Vx is connected with all other c j ∈ Vy .
The step 4 is to calculate the dissimilarity between each two
clusters to form the proximity matrix. The step 5 aims to
achieve the minimization of Eq.(10). The step 6 is to combine
those connected clusters into one cluster. The step 7 is to
update Vx to move up the hierarchy.

In the algorithm, spatially non-adjacent clusters are not
expected to be combined, thus, edges exist between two
adjacent clusters only. The following is a simulated exam-
ple of clustering using the proposed OHC. The input P is
{p1, p2, p3, p4, p5, p6}. The dendrogram of the hierarchical
clustering is shown in Fig.6. In the hierarchy 1, c1 and c2
are combined into one cluster, c5 and c6 are combined into
one cluster, and c3 and c4 are not selected in the combination.
In the hierarchy 2, c3 and the previous combination result of
{c5, c6} are combined into one cluster. The final hierarchical
clustering result is shown in the hierarchy 3, which is {c1,c2},
{c3,c5,c6} and {c4}.

Details of the hierarchical clustering process are shown
below. Fig.7(a) demonstrates the input P . Step 1: initialize
the node set Vx as {c1, c2, c3, c4, c5, c6}, where c1 = {p1},
c2 = {p2}, c3 = {p3}, c4 = {p4}, c5 = {p5} and c6 = {p6};
Step 2: form the node set Vy the same as Vx ; Step 3: connect
spatially adjacent clusters between Vx and Vy to form the edge
set E as shown in Fig.7(b); Step 4: calculate the proximity
matrix PM. Step 5: solve the minimum-cost perfect matching
in G as shown in Fig.7(c). Edges in the perfect matching are
shown in the set � = {e1,2, e2,1, e3,3, e4,4, e5,6, e6,5}; Step 6:
combine clusters c1 ∈ Vx and c2 ∈ Vy as a new cluster c′

1,
and combine c5 ∈ Vx and c6 ∈ Vy as a new cluster c′

4. The
cluster c3 and c4 are unchanged and renamed as c′

2 and c′
3,

respectively. Step 7: update Vx as {c′
1, c′

2, c′
3, c′

4}; Now the first
iteration is done. Repeat Step 2–7 and finally Vx converges
to {c′′

1 , c′′
2 , c′′

3} as shown in Fig.7(i); Step 8: return Vx as the
cluster set C .

In order to show which clusters are grouped in the
iteration, different iteration results of a toy clustering are
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Fig. 7. A simulated example of the proposed OHC. (a) Initial clusters.
(b) The bipartite graph based on (a). (c) The minimum-cost perfect matching
in (b). (d) Cluster sets after the combination based on (c). (e) The bipartite
graph based on (d). (f) The minimum-cost perfect matching in (e). (g) Cluster
sets after the combination based on (f). (h) The bipartite graph based on (g).
(i) The minimum-cost perfect matching in (h).

Fig. 8. The toy example of the proposed OHC. (a) Input point
clouds. (b) Clustering results. (c) Initial input of 680 points. (d) Results
at the first iteration of 680 clusters. (e) Results at the third iteration
of 490 clusters. (f) Results at the fifth iteration of 26 clusters. (g) Results
at the seventh iteration of 9 clusters. (h) Results at the ninth iteration of
2 clusters.

demonstrated in Fig.8. Fig.8(a) and (b) show the input
point clouds and results, respectively. Fig.8(c)–(h) show the
close-view of clustering at the iteration #1,#3,#5,#7 and #9,
respectively.

The matrix PM after the iteration #7 according to Fig.8(g) is
shown in Fig.9(a). The corresponding bipartite graph is shown
in Fig.9(b). The achieved minimum-cost perfect matching is
shown in Fig.8(c). Based on the connected edges in Fig.8(c),
the cluster set C is updated as {c′

1, c′
2, c′

3, c′
4, c′

5, c′
6}, where

c′
1 = {c1}, c′

2 = {c2, c3}, c′
3 = {c4, c6}, c′

4 = {c5}, c′
5 = {c7}

and c′
6 = {c8, c9}. In this example, SM is chosen as 0.4.

VI. EXPERIMENTS

A. Evaluation Methods

In the evaluation, the clustering result is C = {c1,
c2, . . . , ci , . . . , ct } and the ground truth is C ′ = {c′

1,
c′

2, . . . , c′
j , . . . , c′

t ′ }. Each ci or c′
j means a point cluster and

there are t clusters in C and t ′ clusters in C ′. For the purpose of
evaluating results, we calculate the accuracy assessment ncom

Fig. 9. The proximity matrix at the 7th iteration. (a) The numerical values
of the proximity matrix. (b) The achieved bipartite graph. (c) The achieved
minimum-cost perfect matching.

and ncor as shown in Eq.(11) based on the Jaccard index [21],
which commonly used in cluster evaluation.

ncom = 1

t ′
t ′∑

j=1

(

t
max
i=1

|c′
j

⋂
ci |

|c′
j |

)

ncor = 1

t

t∑

i=1

(

t ′
max
j=1

|ci
⋂

c′
j |

|ci | ) (11)

The ncom is to measure the completeness ratio between the
correctly grouped points and the ground truth. The ncor is to
measure the correctness ratio between the correctly grouped
points and the hierarchical clustering result. The problem of
Eq.(11) is that if there is only one cluster in the ground truth
C ′, ncor will be always 1, and if there is only one cluster
in the result C , ncom will be always 1. In order to address
this problem, the minimum of ncom and ncor is chosen as
the accuracy, i.e. nacc = min(ncom, ncor ), to measure points’
difference between C and C ′.

B. Comparisons of Different Methods

This section evaluates performances of KMiPC [16],
KNNiPC [9], 3DNCut [3], MinCut [4], PEAC [17] and the
proposed OHC on five typical scenes. Experimental scenes
are shown in Fig.10, including the HouseSet: a single object,
the BushesSet: two separated sparse objects, the LamppostSet:
two connected rigid objects, the TreesSet: two connected
non-rigid objects and the PowerlinesSet: a complex scene
with different objects. Those experimental scenes are collected
by the mobile laser scanner, i.e. RIEGL VMX-450 sys-
tem, which uses a narrow infrared laser beam at a very



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: OHC APPROACH TO MOBILE LiDAR POINT CLOUDS 7

Fig. 10. Performances of different methods. (a) HouseSet. (b) BushSet. (c) LamppostSet. (d) TreeSet. (e) PowerlinesSet. Row 1: the segmentation ground
truth of each scene. Row 2: performance of KMiPC [16]. Row 3: performance of KNNiPC [9]. Row 4: performance of 3DNCut [3]. Row 5: performance of
MinCut [4]. Row 6: performance of PEAC [17]. Row 7: performance of the proposed OHC.

high scanning rate. The scanner can be up to 200 lines/sec
and enables full 360-degree beam deflection without any
gaps.

The first row of Fig.10 shows the ground truth. Since
the ground-truth of object regions is difficult to reproduce,
our ground-truth is achieved by segmenting visually inde-
pendent object instances manually. We use the CloudCom-
pare visualization software (http://www.danielgm.net/cc/) to
segment instance one by one. From the second row to the

last are the performance of KMiPC, KNNiPC, 3DNCut,
MinCut, PEAC and the proposed OHC, respectively. In the
visualization, different colors are used to represent different
segments. KMiPC, KNNiPC and MinCut are implemented
by using the Point Cloud Library (www.pointclouds.org/),
3DNCut is extended from the normalized-cut method
(www.cis.upenn.edu/ jshi/software/). PEAC is achieved based
on the software of Feng et al. (www.merl.com/research/?
research=license-request&sw=PEAC).
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Fig. 11. Evaluation of different methods using nacc.

KMiPC is suitable for segmenting symmetric objects and
works well in the BushesSet and TreesSet. However, it fails
to split connected objects. KNNiPC relies on the density
heavily and is difficult to separate different objects as shown
in the HouseSet. 3DNCut tries to normalize the difference of
points’ Euclidean distances in each group. It tends to group
points evenly as shown in the HouseSet and TreesSet. MinCut
performs well in most cases when the required center point
and radius of each object are set properly. PEAC groups points
based on the planar information and requires organizing data
before the segmentation. The proposed OHC is not sensitive
to the density of points as shown in the BushesSet. Moreover,
it does not require initial number of clusters and the location
of each object. The attached traffic sign in the LamppostSet is
segmented successfully by using the proposed OHC. The split
of the overlapping regions between non-rigid objects is rather
difficult due to the rapid change of normal vectors as shown
in the TreesSet. In the step of computing the normal vector
at a point, when using the normal vectors for the clustering,
it makes much different if points are located on a tree. Based
on Eq.(7), we set a large λ to let the Euclidean distance
dominate the PM calculation. Results are shown in the last
row of Fig.10(d). Leaves points are supposed grouped into
one cluster. The over-segmentation is because that there are
separated branches and each tree crown is regarded as one
cluster.

The quantitative evaluation is shown in Fig.11. One can
observe that the average accuracy of the proposed OHC is
higher than other methods through all experimental scenes.
In the clustering, the proposed OHC uses the matching
in a bipartite graph to combine regions from the same
object instance, such as the house facade and trash bin
in Fig.10(a) and Fig.10(c), respectively. The proposed method
achieves the optimal cluster combination by solving the
minimum-cost perfect matching in the point-based graph. This
is more accurate than other methods in splitting of overlapping
regions from different instances as shown in Fig.10(b) i.e. the
split of bushes and ground, Fig.10(d) i.e. the split of trunks
and tree leaves, and Fig.10(e) i.e. the split of power-lines and
poles. The key is the proposed combination optimization in
the clustering.

C. Analysis of Parameters Sensitivity

In the implementation of the proposed OHC, there are
three parameters, namely the k to select the nearest neighbor

Fig. 12. Sensitivity analysis. (a) Mean μ is 0.8673, standard deviation σ is
0.0107 (fix k = 40 and λ = 4). (b) Mean μ is 0.8595, standard deviation σ is
0.0086 (fix λ = 4 and SM = 0.4).(c) Mean μ is 0.8474, standard deviation
σ is 0.0132 (fix k = 40 and SM = 0.4).

points, λ to balance the weight of the α
(

pi , p j , ci , c j
)

and
β

(
pi , p j , ci , c j

)
, and SM to formulate the proximity matrix.

In this paper, λ is 4, k is 40 and SM is 0.4. For the purpose
of the sensitivity analysis, we range all parameters from -
30% to 30% with respect to the above-mentioned values. This
experiment is conducted by fixing two parameters among λ,
SM and k and alternating the rest one. Fig.12 (a) shows results
by fixing k = 40 and λ = 4, Fig.12 (b) shows results by fixing
λ = 4 and SM = 0.4 and Fig.12 (c) shows results by fixing
k = 40 and SM = 0.4. In each case, the mean accuracy
is above 85% and the standard deviation is less than 1.5%.
A large k or SM may cause under-segmentation and a small
k or SM will increase the over-segmentation rate. A large λ
works well for segmenting connected objects and a small λ
is preferred when there are less overlapping among different
objects.

Although the proposed OHC requires to be given three
parameters empirically, which can be a shortcoming of our
work, Fig.12 demonstrates that it is stable to different input
parameters in the suggested value. In the future, we will try
to figure out the adaptive parameter setting method at the risk
of requiring more prior knowledge of input scenes.

D. Performance on Large-Scale Datasets

We also test the proposed OHC on two large-scale MLS
datasets. Fig.13 shows the performance on a large-scale resi-
dential point set (558 MB, 12,551,837 points) scanned by the
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Fig. 13. Clustering results of a large-scale residential point set.

Fig. 14. Clustering results of a large-scale urban point set.

RIEGL scanner. Fig.14 shows results of a large-scale urban
point set (528 MB, 10,870,886 points) collected by the Optech
scanner.

Segmentation challenges in the residential point set are
(1) the split of overlapping trees and (2) the split of houses
with different structures. As shown in Fig.13, we succeed to
separate trees and houses into different clusters in region A.
A house instance is split into several regions as shown in
region B. Segmentation challenges in the urban point set are
the split of objects with varied sizes. Various high buildings
and low vegetation are segmented as shown in Fig.14 region A.
A high building is separated from the base, because of the
data incompleteness in connectivity regions as shown in Fig.14
region B.

Both 3DNCut and MinCut require human-computer interac-
tion in the point cloud segmentation, for example, they require
presetting the number of objects in the scene. The MinCut
requires manually setting center points and radius for each
object, which is extremely time-consuming in the large-scale
scenes. PEAC is proposed for dealing with organized point
clouds. Therefore, it is not practical to test 3DNCut, MinCut
and PEAC on large-scale scenes.

VII. DISCUSSION

A. Merging Regions

Since our clustering results can not be used in the object
detection or recognition, we propose a merging strategy to
combine regions into object instances. The expected outcome
is that after the rule-based merging process, regions from the
same object are combined into one instance. In this paper,
we merge regions using the following two rules.

(1) The first rule is based on Euclidean distances between
clusters. With the help of the ground information in MLS

Fig. 15. Merging results based on the Euclidean distance.

Fig. 16. Merging results based on the subset information.

data demonstrated in the left of Fig.15, we can easily obtain
road direction in a local region (i.e. 10 m by 10 m). When
calculate Euclidean distances between the point pi and p j ,
if the direction from pi to p j is parallel to the local road
direction, d(pi , p j ) will be enlarged by 5 times. This rule
is designed for the distance calculation in the XOY plane.
It is worth noting that spatially close clusters are merged into
one component in the above-mentioned clustering process.
Therefore, we increase the Euclidean distance threshold in
the merging of regions. If the closest distance between two
clusters is less than 5 m, they will be merged into one cluster.
This rule works well in merging houses, vehicles and trees as
shown in the right of Fig.15.

(2) The second rule is based on the subset information.
As shown in the left of Fig.16, the cluster A and B are
neighbors in the Z-axis direction. A′ and B ′ are projection
point sets of the cluster A and B in the XOY plane, receptively.
If |A′∩B ′|

|A′ | > 0.9 (i.e. A′ ⊂ B ′) or |A′∩B ′|
|B ′| > 0.9 (i.e. B ′ ⊂ A′),

the cluster A and B will be merged into one cluster AB . This
rule is designed for merging clusters in the Z direction, such
as roofs and facades as shown in the right of Fig.16.

We use the above-mentioned rules one-by-one in the auto-
matic merging process. The merging results of the above
residential and urban scenes are shown in Fig.17 and Fig.18,
respectively. Each bounding box indicates an object instance
after the rule-based merging process. Fig.17 region A demon-
strates the merging of trees and Fig.17 region B shows the
merging of houses. Fig.18 region A demonstrates the merging
of buildings and Fig.18 region B shows the merging of
buildings. Regions from one object are merged into the same
instance.
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Fig. 17. Merging performance on residential scene.

Fig. 18. Merging performance on urban scene.

TABLE I

EXECUTION TIME OF EACH ALGORITHM

B. Complexity Analysis

The proposed OHC works automatically for the point cloud
clustering. There is no need for human-computer interaction,
e.g. set initial number of clusters or locations of each object.
The performance is competitive against the state-of-the-art
methods.

The space complexity of the initial proximity matrix
is O(N2). Since the proximity matrix is symmetric and
most of its elements are ∞, we use sparse matrix strategy
to reduce the space complexity. The time complexity relies
on the Kuhn-Munkres algorithm which is O(N2). To deal
with the large-scale point cloud clustering, we present a
strategy to increase our efficiency: 1) remove ground points

Fig. 19. Ground removal. (a) Input scene. (b) Ground points.
(c) Above-ground points.

using the Cloth Simulation Filter (CSF) approach [22];
2) down-sample the above-ground points into a sparse point
by randomly removing points from input data; 3) apply the
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Fig. 20. Clustering results from down-sampled points. The first row shows input down-sampled data and the second row shows our results. (a) Points
are down-sampled to 90%. (b) Points are down-sampled to 60%. (c) Points are down-sampled to 30%. (d) Points are down-sampled to 10%. (e) Points are
down-sampled to 5%. (f) Points are down-sampled to 1%.

TABLE II

ANALYSIS OF THE SEGMENTATION FROM DOWN-SAMPLED POINTS

proposed OHC to the down-sampling data; 4) assign those dis-
carded points from the down-sampling process to their closest
clusters.

The cost time in each algorithm is shown in Table.I. In the
comparison, only KMiPC and KNNiPC perform better than
ours. 3DNCut is slower than the proposed method when the
scale of the scene is large. For MinCut, the human-computer
interaction is very time-consuming. The organization of point
clouds in PEAC is not counted in Table.I, which will cost
lots of time. In order to deal with the high complexity issue,
Fig.19 shows the performance of OHC on down-sampling
data. Fig.19 (a) shows an input scene containing vegetation,
buildings and roads. Ground are removed by the CSF approach
as shown in Fig.19 (b). The rest of above-ground points are
shown in Fig.19 (c) which are down-sampled to different levels
randomly. The first row of Fig.20 demonstrates down-sampled
points by 90%, 60%, 30%, 10%, 5% and 1%. The second
row of Fig.20 shows the corresponding object segmentation
results.

In the case of inputting down-sampling data, although
the accuracy of the overlapping region segmentation is
decreased and there appear the over-segmentation and
under-segmentation as shown in Fig.20 and Table II, OHC
provides promising results at different sampling levels. The
accuracy and cost time are shown in Table II. This exper-
iment was done on a Windows 10 Enterprise 64-bit, Intel
Core i7-6900k 3.20GHz processor with 64 GB of RAM by
using Matlab R2018a. By using the down-sampling strategy,
the proposed OHC succeeds in segmenting objects from a
large-scale point set effectively.

VIII. CONCLUSIONS

This paper investigates a new optimal hierarchical clus-
tering (OHC) method for achieving object instances from
3D mobile LiDAR point clouds. The cluster combination is
obtained by the matching in a point-based graph, and the
combination is optimized by solving the minimum-cost perfect
matching in a bipartite graph. In the sensitivity analysis,
the standard deviation of the accuracy is less than 1.5%
through all experimental scenes, which shows the algorithm’s
robustness to different parameters. To merge regions into
object instances, this work proposes a rule-based grouping
strategy to merge regions into the same object. The draw-
back of the proposed OHC is the time complexity, which
is addressed by using the sampling strategy. Performance on
the residential and urban point sets shows that the proposed
method is effective in clustering regions from different scenes
and superior to the state-of-the-art methods in terms of the
accuracy.

Future work will focus on adding the dissimilarity measure
of the intensity and color information in the proximity matrix.
Besides, we will try to improve the efficiency of the combi-
nation by using supervoxel techniques in the clustering.
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