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Power Line Extraction From Mobile LiDAR
Point Clouds

Sheng Xu and Ruisheng Wang

Abstract—This paper proposes a three-step approach to extract
power lines from components with mobile laser scanning (MLS)
data. First, we use the maximum a posteriori estimation to par-
tition point clouds into components. Each component contains
points from one object only. The segmentation is optimized by
the minimum-cost perfect matching globally and robust to Gaus-
sian noise with the help of the proposed robust estimator. Then,
we extract power lines from components based on the linear struc-
ture information. Finally, power line components are grouped into
individual spans. Experiments show that our method succeeds to
achieve the power line extraction from MLS data effectively and
outperforms state-of-the-art approaches in terms of the accuracy
and robustness.

Index Terms—Mobile laser scanning (MLS), power line extrac-
tion, robust estimator, segmentation.

I. INTRODUCTION

NOWDAYS, accurately monitoring power lines by LiDAR
point clouds has become a high priority for utility compa-

nies [1]. The key in this task is the power line extraction from
point clouds, which can be achieved by two strategies. One is
the classification-based approach [2]–[5], which extracts fea-
tures first and then chooses a learning model to classify points.
The other one is the detection-based approach [6]–[10], which
detects candidate points first and then extract power lines based
on the line property. The former technique requires a large num-
ber of samples for the training process, which is time-consuming
and tedious. The latter technique does not contain the learning
process but highly depends on the geometric information of a
local region, which can be unreliable in the incomplete, unor-
ganized, and uneven mobile laser scanning (MLS) data.

This paper aims to investigate a new approach for power
lines extraction from MLS data. Two main contributions are as
follows: First, we provide a robust estimator to help partition Li-
DAR point clouds into components, and second, we succeed to
extract power lines from components accurately. The proposed
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method achieves optimal segmentation and can be robust to the
generated outliers. The geometric information of a single point
is based on its neighbor information. However, a local region
may contain points from different objects, which increases the
challenge in the subsequent linear structure extraction. This is
one of the disadvantages in methods based on k-nearest neigh-
bors, which is easy to fail in the split of linear structure seg-
ments and other objects. Therefore, we extract power lines from
components rather than a local region constructed by k-nearest
neighbors. In this paper, each component belongs to only one
object, which is easier for the line extraction.

This paper is organized as follows. Section II reviews the re-
lated work on the power line extraction. Section III formulates
the segmentation into the maximum a posteriori (MAP) estima-
tion and introduces a new robust estimator to against the noise.
Section IV presents the optimization of the energy function.
Section V extracts power lines from components using the line
property information. Section VI evaluates the performance of
the power line extraction. Section VII discusses limitations and
key points in the proposed extraction. Conclusions are outlined
in Section VIII.

II. RELATED WORK

A. Power Line Extraction

In the classification-based approaches, Mclaughlin [2] uses
the Gaussian mixture model to classify data into transmission
lines, vegetation, and other surfaces. Then, the author uses the
local affine model to segment transmission lines into individual
spans. Liang et al. [6] classify the input point clouds into power
lines and non-power-lines by examining point’s linear structure
information first. Then, they calculate the direction of power
lines based on the point’s distribution information and finally,
they use the least square fitting algorithm to reconstruct power
lines. Kim and Sohn [3] calculate points’ features based on
the distribution property first. Then, they use a non-parametric
discriminative classifier trained with features to label the point
clouds directly. Guo et al. [4], [5] calculate features based on the
geometry and echo information of the input data first. Then, they
use a post-processing segmentation step to separate power lines
from others. The missing power lines are addressed by adding
the estimation of line model parameters in their post-processing.

In the detection-based approaches, Jwa and Sohn [7] start by
extracting candidate power lines based on the line property and
then represent power lines through a catenary model. Zhu and
Hyyppä [8] apply a set of statistical criteria, e.g., the height,
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density, and histogram, for finding candidate power lines first.
Then, they transform candidate power lines into a binary im-
age and extract power lines from two-dimensional (2-D) binary
images based on the line properties. Cheng et al. [10] organize
input points into voxels first, and then filter candidate power
line voxels based on their geometric features. Finally, they ex-
tract power lines by using the polynomial equation fitting. Guan
et al. [9] apply the elevation difference and slope criteria to
detect off-road points first. Then, they extract candidate power
lines based on the height, spatial density, and shape information.
Finally, they extract power lines by the combination of Hough
transform and Euclidean distance clustering.

B. Point Cloud Segmentation

Since LiDAR point clouds are uneven, unorganized, and mas-
sive, points’ local information can be not reliable for the cal-
culation of the line property, especially when neighbor points
belong to several objects. Therefore, we prefer to extract the
linear structure information from components and each compo-
nent belongs to only one object. However, the accuracy of the
segmentation is far from being desired. In the following, typi-
cal methods proposed for the point cloud segmentation will be
reviewed and analyzed.

The commonly used approach in the segmentation is the clus-
tering. Lavoué et al. [11] introduce the classical K-means ap-
proach to group points sharing the similar properties. The idea
of KMiPC (K-means in point clouds) is to partition points into
different sets to minimize the sum of distances of each point in
the cluster to the center. The problem is that their results rely
on the initial number of sets. Klasing et al. [12] present a ra-
dially bounded nearest neighbor grouping strategy, which is a
kind of k-nearest neighbors approach. The principle of KNNiPC
(k-nearest neighbors in point clouds) is to select a number of
neighbor points based on the distance metric for a given point
and assign them the same label. KNNiPC does not require ini-
tializing the number of clusters manually as in KMiPC, but
the result highly depends on the size of the neighbors. The
state-of-the-art methods is to formulate the segmentation as a
mathematical optimization problem as shown in Yu et al. [13]
(3DNCut) and Golovinskiy et al. [14] (MinCut).

3DNCut succeeds to extend the 2-D normalized-cut [15] for
3-D point cloud segmentation by adding the elevation infor-
mation. It partitions input points into two disjoint groups by
minimizing the dissimilarity within each group and maximizing
the dissimilarity between different groups. Each point will be
regarded as a node in the formulation of their graph and spatially
close nodes are connected with each other. Connections in the
graph are weighed by the Euclidean distances between points.
3DNCut succeeds to obtain optimal results for the problem of
two-label segmentation. But similar to KMiPC, a predefined
parameter for the number of objects has to be set manually in
the multi-object segmentation.

MinCut partitions input points into two disjoint groups, i.e.,
the background and foreground, by minimizing the sum of the
data term and the smoothness term. The data term measures how
appropriate a label is for a point given the observed data, and the

smoothness term is to constrain labels of the neighboring points.
For the graph model, points are formed as nodes, and neighbor-
ing points are connected with each other. Each point connects
with both sink vertex (background) and source vertex (fore-
ground). MinCut uses the Euclidean distances between neigh-
boring points as weights for connections. The edges between
nodes and the sink vertex are weighed by a user-defined value.
The edges between nodes and the source vertex are weighed
by the Euclidean distances between nodes and the center point.
The solution cut, which separates the graph into background and
foreground, is obtained by the graph-cut method [16]. MinCut
obtains competitive segmentation results in terms of the opti-
mum and accuracy. However, weights of connections between
nodes and vertices rely on the radius and the center point of each
object.

The above-mentioned shortcomings make them difficult to
segment multi-object from point clouds. Moreover, their robust-
ness to noise is low. This is because their optimization process
ignores the contamination generated during the LiDAR point
collection. Therefore, our target is to propose a new method to
address the existing disadvantages in the LiDAR point cloud
segmentation first. Then, extract power liners from components
which contain accurate geometric information, i.e., the linear
structure.

III. ENERGY FUNCTION FORMULATION

A. Segmentation Model Derivation

Assume that C = {c1 , c2 , . . . , cn} is the set of input points
andL = {1, 2, . . . ,m} is the set of component labels. The com-
ponent label of a point ci is denoted by li and li ∈ L. From
Bayes’ rule, the joint posterior probability over L given C is

P (L | C) =
P (C | L)P (L)

P (C)
. (1)

In this paper, we define

P (C | L) ∝
∏

ci ∈C
exp (−ϕ (ci, li)) (2)

where ϕ (ci, li) is the data term to calculate the penalty of as-
signing a point ci with the label li . Under the assumption that
the label of a point depends only on labels of its neighborhood,
we have

P (L) ∝
∏

ci ∈C

∏

cj ∈N (i)

exp (−ψ (ci, cj , li , lj )) (3)

whereN(i) is the set of neighbor points of ci , andψ (ci, cj , li , lj )
is the smoothness term to constrain the consistency of neighbor
points’ labels. Combine (1)–(3), we have

P (L | C)

∝exp

(
−
∑

ci ∈C
ϕ (ci, li)

)
exp

⎛

⎝−
∑

ci ∈C

∑

cj ∈N (i)

ψ (ci, cj , li , lj )

⎞

⎠.



736 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 2, FEBRUARY 2019

Fig. 1. Inconsistent normal vectors.

Fig. 2. Illustration of the decomposed vectors at a point. (a) Vectors at a plane
region. (b) Vectors at a line region.

This paper models the segmentation as an MAP estimation
and the optimal segmentation label configuration L̂ becomes

L̂ = arg max
L

P (L | C)

= arg min
L

⎛

⎝
∑

ci ∈C
ϕ (ci, li) +

∑

ci ∈C

∑

cj ∈N (i)

ψ (ci, cj , li , lj )

⎞

⎠ .

(4)

In the initialization, each point has a unique component label.
The value of (4) is large, because points in the homogeneous
region are assigned with different labels. Our goal is to update
labels of points to optimize (4). The following is to show the
calculation detail of the data term and smoothness term.

As we know, homogeneous points in a local plane usually
share the similar normal vector. However, normal vectors at
points from lines are inconsistent, as shown in Fig. 1. Therefore,
our data term consists of both the normal vector V|

i and the
principal direction vector V−

i as

ϕ (ci, li) = (1 − λi) · ρ(V|
i ,V

|
j∗) + λi · ρ(V−

i ,V
−
j∗) (5)

where V|
j∗ and V−

j∗ are the normal vector and principal direction
vector at the point cj∗ ∈ (Ω(i) ∩N(i)), respectively. Ω(i) is the
set of points sharing the label li . In this paper, we approximate
the normal vector V|

i and the principal direction vector V−
i to

a given point ci by performing Principal component analysis
(PCA) [17] on the covariance matrix of points in Ω(i) ∩N(i).
Fig. 2(a) and (b) illustrates the decomposed vectors by PCA
at a point in a plane and in a line, respectively. V−

i refers to

the largest component V1 and V|
i corresponds to the smallest

component V3 , respectively. λi aims to balance the normal
vector and principal direction vector, which is calculated as

λi =
1

|Ω(i) ∩N(i)|
∑

cj ∗

d0(cj∗, pj∗) (6)

where the point pj∗ is the projection of cj∗ on the vector V−
j∗,

as shown in Fig. 3. d0(cj∗, pj∗) decides whether a point be-
longs to a line or not depending on a threshold dl . If the
Euclidean distances between the point cj∗ and pj∗ is smaller
than dl , d0(cj∗, pj∗) will be 1, otherwise d0(cj∗, pj∗) will be 0.

Fig. 3. Calculation of the coefficient λi in the data term.

Fig. 4. Plot of a robust influence function. (a) Requirements of the robust
estimator. (b) Center-symmetric type G1 and G2 . (c) Axis-symmetric type G3
and G4 .

“||” measures the cardinality of a set. If the point ci is from
a line region, λi will be close to 1 and the principal direction
determines ϕ (ci, li) in (5). If the point ci is from a plane region,
λi will be close to 0 and the normal vector decides the data term.
The target of (5) is to keep the normal vector and the direction
consistent in a local region.

The smoothness term ψ (ci, cj , li , lj ) is defined as

ψ (ci, cj , li , lj ) = ρ(ci , cj ) · δli �= lj (7)

where δli �= lj is a binary number. If li �= lj , δli �= lj is 1, other-
wise δli �= lj is zero. The target of (7) is to segment spatially
close points into the same group using the Euclidean distances
between points.

The above-mentioned ρ is an estimator to evaluate the dis-
tance between vectors [e.g., in (5)] or points [e.g., in (7)], which
will be discussed in Section III-B.

B. Robust Estimator Formulation

To deal with the contaminated LiDAR data, we introduce
the robust estimation by analyzing the influence function of
estimators to measure the difference between points’ properties.
The influence function shows the infinitesimal behavior of the
asymptotic value and measures the asymptotic bias caused by
the contamination [18]. To be a robust estimator, as shown in
Fig. 4(a), the influence χ based on the error ζ is supposed to be
as follows:

1) lower than the curve 1 to be bounded;
2) lower than the curve 2 to increase or decrease gently to

the limit;
3) higher than the curve 3 to increase or decrease effectively;
4) lower than the curve 4 to be vanished beyond a threshold;
5) 0 at the origin to achieve the unique minimum.
As shown in Fig. 4(a), the curve G0 meets all the above re-

quirements, which can be regarded as a part of a robust influence
function. The entire influence functionG (ζ) can be designed in
center- or axis- symmetry of G0 , as shown in Fig. 4(b) and (c).
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Fig. 5. Estimators and influence functions. Estimators are in the first row and their corresponding influence functions are in the second row. (a) Function of L1
estimator: ρL 1 = |ζ | and its influence function: �l1 = sign(ζ). (b) Function of L2 estimator: ρL 2 = ζ2/2 and its influence function: �l2 = ζ . (c) Function of

L1 − L2 estimator: ρL 1−L 2 = 2
(√

1 + ζ2/2 − 1
)

and its influence function: � − = ζ√
1+ ζ 2 /2

. (d) Function of Huber’s estimator: ρH = ζ2/2, if |ζ | < r;

ρH = r(|ζ | − r/2), if |ζ | � r, r = 1.345 and its influence function: �h = ζ , if |ζ | < r; �h = r · sign(ζ), if |ζ | � r, r=1.345. (e) Function of the proposed

estimator: ρO = 1 − 2
eζ + e−ζ and its influence function: �o = eζ −e−ζ

(eζ + e−ζ )2 .

Fig. 5 shows five estimators and their influence functions
in the first and second row, respectively. Commonly used non-
robust estimators are theL1 estimator: ρL1 and theL2 estimator:
ρL2 , as shown in Fig. 5(a) and (b), respectively. Their problems
are that ρL1 ’s influence function �l1 is not strictly continuous
at ζ = 0, which may cause an indeterminate result and ρL2 ’s
influence function �l2 is not bounded. Two better estimators
are the L1−L2 estimator: ρL1−L2 and the Huber’s estimator
[19]: ρH , as shown in Fig. 5(c) and (d), respectively. The plot
of the estimator ρL1−L2 and ρH are with the same shape and
amplitude. However, they have different influence functions,
i.e., � − is smoother than �h . This means that it is difficult to
analyze the robustness of an estimator without the help of its
influence function. From their influence functions � − and �h ,
we know that they can reduce the influence of large errors and
keep stable at ζ = 0, however, they are not vanished after arriving
at the maximum. Fig. 5(e) shows the plot of the proposed robust
estimator ρO defined as 1 − 2

eζ +e−ζ and the influence function

�o calculated by eζ −e−ζ
(eζ +e−ζ )2 . Our influence function �o is formed

based on the proposed influence function G1 and overcomes all
of the above-mentioned drawbacks.

It is worth noting that the amplitude of the proposed estimator
can be adjusted by multiplying a positive number. In this paper,
we scale the difference of points and normal vectors from 0 to 1,
as shown in the first row of Fig. 5(e). Therefore, the estimation
of properties’ difference by the above proposed robust estimator
can be defined as

ρ(∗, ∗) = 1 − 2
eζ + e−ζ

. (8)

If ρ(∗, ∗) measures differences between two vectors Vi and
Vj as shown in (5), we have ζ = sin(Vi ,Vj ), i.e., the sine of
the angle between the vector Vi and Vj . If ρ(∗, ∗) measures
differences between two points ci and cj as shown in (7), we

have ζ = 1
||ci−cj || , i.e., inversely proportional to the Euclidean

distances between the point ci and cj .

IV. MINIMUM-COST PERFECT MATCHING (MCPM) MODEL

Equation (4) can be solved by many existing optimization
methods, e.g., the graph-cut and normalized-cut approach. How-
ever, we expect to achieve the multi-object segmentation without
any human-computer interaction as in graph-cut and without ini-
tializing the number of objects as in normalized-cut. Since the
graph-based optimization works well in flexibly formulating the
problem constraints and globally achieving the optimal solution
in the minimization [20], this section aims to solve the energy
function optimization using the bipartite graph.

Our idea is that, a high-energy function can be minimized by
updating neighbor points’ labels. Therefore, the key of the opti-
mization is to update the label of each point (label configuration)
optimally. For an input point set C = {c1 , c2 , c3 , . . . , cn}, we
define a matrix Mn×n to form the objective function for solving
the optimal update solution. The element M(i, j) is a binary
value. If M(i, j) is 1, points in Ω(i) ∪ Ω(j) will be updated as
sharing the same label, where Ω(i) is the set of points sharing the
label i. In the initial label configuration, each unique label con-
tains only one point, i.e., Ω(1) = {c1},Ω(2) = {c2},Ω(3) =
{c3}, . . . ,Ω(n) = {cn}. If the minimum Euclidean distances
between Ω(i) and Ω(j) is small (≤ dp ), M(i, j) will be initial-
ized as 1, otherwise M(i, j) will be 0. Neighbor points with
different labels will be updated into the same label when they
are homogeneous. Our goal is to iteratively update the labels
of points to decrease the energy in (4) until the label configura-
tion converges, which means that homogeneous points share the
same component label. In this paper, each point has only one
label, i.e., Ω(i) ∩ Ω(j) = 
. Points sharing the same label will
be regarded as in the same component. The objective function
and constraints for optimizing the update solution are defined
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as

Minimize
M

E(M) =
n∑

i=1

n∑

j=1

M(i, j) · γ(i, j)

Subject to
n∑

i=1

M(i, t) = 1, t ∈ {1, 2, 3, . . . , n}

j=1∑

n

M(t, j) = 1, t ∈ {1, 2, 3, . . . , n} (9)

where the weight function γ(i, j) is calculated as

γ(i, j) =
{

α, i = j
ϕ (ci, li) + ψ (ci, cj , li , lj ) , i �= j.

(10)

If M(i, j) is 1, there may be a combination between the ith
and jth component. The penalty for the combination is calcu-
lated by γ. If the ith component is not merged with any other
component, there will be a user-defined penalty α. Two con-
straints in (9) shows that there is only one element that can be
assigned with 1 in each row or column of M, i.e., each compo-
nent can only be merged with one component. In the work of
Xu et al. [21], they only consider the normal vector information
in the cluster combination, therefore, most power lines are re-
moved as isolated clusters. In this paper, the principal direction
is included into the segmentation optimization. The following
aims to show how to minimize (9) for the segmentation based
on the McPM.

The defined M is a symmetric matrix that can be repre-
sented by a bipartite graph G = {Vx ,Vy ,E}. The node sets
Vx = {Ωx

1 ,Ω
x
2 , . . . ,Ω

x
i } and Vy = {Ωy

1 ,Ω
y
2 , . . .Ω

y
j } represent

the point set of each label and Ωx
i = Ωy

i = Ω(i). The edge set
E = {e1,1 , e1,2 , e1,3 , . . . ei,j} indicates the connection between
Vy and Vx for restricting the label update process. As we men-
tioned before, each row or column has only one element that are
equal to 1 as shown in (9). This constraint can be achieved by the
perfect matching in the bipartite graph, which is defined as each
node has a matching, i.e., a set of edges without common ver-
tices in a graph. Therefore, the solution of (9), which determines
an update solution, can be solved by the corresponding perfect
matching in G. Connection between Ωx

i ∈ Vx and Ωy
j ∈ Vy in

the perfect matching means that points in (Ωx
i ∪ Ωy

j ) will be
updated as sharing the same label. We weigh the edge ei,j by
the above-mentioned function γ(i, j) and the optimal update
solution can be achieved by solving the McPM of G.

V. POWER LINES EXTRACTION FROM COMPONENTS

After we partition input point clouds into optimal compo-
nents, each component will only contain unique geometric in-
formation. However, a power line is usually split into different
line components, as shown in Fig. 6(a). Xia and Wang [22] pro-
pose a linear structure clustering method based on the k-nearest
neighbor graph for MLS point clouds. However, their method
relies on the gradients in point clouds, which are not applicable
to power lines. The following aims to group power lines into
individual spans by analyzing the line property of components.

Fig. 6. Line components and the merging results. (a) Extracted line compo-
nents. (b) Three complete individual spans.

Fig. 7. Illustration of the line merging process.

Fig. 8. Principal direction at each point.

Fig. 9. Different views of the left and right points in line components.
(a) Top-down view. (b) Side view.

As shown in Fig. 7, for a component Si , we denote its mean
coordinate point as Mi and we find the furthest point on each
side of Mi as Lpi and Rpi , respectively. The line merging is
based on the minimum distances between components. For each
componentSi , we calculate the principal direction of each point,
as shown in Fig. 8. If the component Si and Sj are in the same
direction (≤dd ), the minimum Euclidean distances between the
component Si and Sj is defined as

D(Si, Sj ) = min(||Rpj − Lpi ||, ||Lpj − Lpi ||
||Rpj −Rpi ||, ||Lpj −Rpi ||). (11)

In the example shown in Fig. 7, the component S1 will be
merged with its closest component S4 . S3 and S5 are too far
from S1 in terms of the Euclidean distance. S2 and S1 are not
in the same direction. After the line merging, we will update
the left and right points for each component based on the new
middle point. Fig. 9(a) and (b) shows the left and right points
in the line merging from different views. In the merging of line
components in Fig. 6(a), we achieve three complete individual
spans, as shown in Fig. 6(b).
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Fig. 10. Power line extraction results.

VI. EXPERIMENT AND EVALUATION

A. Power Line Extraction Results

This section aims to show the performance of our power
line extraction, including splitting input point clouds into com-
ponents and grouping power lines into individual spans. The
experimental scene contains 6 124 105 points and the area is
over 200 m by 800 m. Fig. 10 shows the segmentation result
based on the bipartite graph optimization. Individual compo-
nents are illustrated by different colors. Although errors appear
in the overlapping region between different vegetations, power
lines (black) are detected effectively based on the line’s prop-
erty information. We show four close views of different power
line cases. Fig. 10(a) shows the extraction results of the straight
power lines. Fig. 10(b) shows the extraction results of the in-
complete power lines. Fig. 10(c) shows the extraction results of
the crossing power lines. Fig. 10(d) shows the extraction results
of the twined power lines. In all test cases, we succeed to extract
power lines from the achieved components.

Results of the individual span grouping are shown in Fig. 11.
Fig. 11(a) is the top-down view of all extracted power line spans.
Fig. 11(b) shows results of the straight power lines. Fig. 11(c)
shows results of the crossing power lines. Fig. 11(d) shows
results of the power lines in various densities. Fig. 11(e) shows
results of the power lines in the complex situation, including the
twined power lines and spatially close power lines. As shown
in Fig. 11, the proposed line component grouping succeeds to
achieve all individual spans in the experimental scene.

B. Extraction Performance Evaluation

The evaluation of our power line extraction requires the cal-
culation of true positive (TP), false negative (FN), and false
positive (FP). TP means that power lines are detected correctly
from the input. FN means that power lines are wrongly detected
as non-power-lines. FP means that non-power-lines are wrongly
detected as power lines. The ground truth of power lines for the
reference is obtained manually from the input. To evaluate ex-
traction results, we calculate the correctness, completeness, and

Fig. 11. Individual spans. (a) Top-down view of results. (b) Straight power
lines. (c) Crossing power lines. (d) Incomplete power lines. (e) Complex power
lines.

Fig. 12. Comparison with other power line extraction methods.

Fscore as

Correctness =
TP

TP + FP

Completeness =
TP

TP + FN

F score =
2 × TP

2 × TP + FP + FN
(12)

respectively. The correctness measures the ratio of correctly ex-
tracted power lines in results, and the completeness measures
the percentage of correctly extracted power lines in ground truth.
The Fscore is the harmonic mean of correctness and complete-
ness. In order to demonstrate the superiority of the proposed
method, we compare our results with other methods, including
Mclaughlin06 [2], Jwa12 [7], Zhu14 [8], Guo15 [4], Guo16 [5],
Guan16 [9], and Cheng14 [10] in Fig. 12.

Our correctness is a little lower than Guan16 [9] and Cheng14
[10], this is because our data contain lots of overlapping
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Fig. 13. Evaluation of different parameters.

TABLE I
EVALUATION RESULTS WITH DIFFERENT PARAMETERS

regions between power lines and vegetations. Our complete-
ness is lower than Zhu14 [8] and Guo16 [5], this is because our
experimental scenes are much more complex. Recently, Chen
et al. [23] propose an automatic method to extract transmission
lines from unmanned aerial vehicle LiDAR data. Both correct-
ness and completeness of their method are better than ours.
However, their method depends on the catenary curve fitting
and fails to segment the top of the tree encroachment in the case
of the low point density. As shown in Fig. 10(b), our work per-
forms effectively and accurately on the extraction of incomplete
powers lines. The evaluation of Fscore shows that the proposed
method achieves a good balance between the correctness and
completeness.

C. Parameters Analysis

There are five parameters in the proposed power line ex-
traction method. The suggested parameter values are given in
Table I. dl is used in the data term for λ, which measures the
Euclidean distances between a point and a line. If a point is
close to a line, this point will be regarded as belonging to this
line. α is a user-defined penalty for the segmentation. Only if
the penalty of merging two components is smaller than α, these
two components can be merged. A largeαwill increase the ratio
of the under-segmentation and a small α will increase the ratio
of the over-segmentation. dp and k are used for the selection of
the neighbor components and points, respectively. In this paper,

dp is not sensitive to different densities, because the Euclidean
distances between two individual spans are much larger than
two points. k is used in the calculation of normal vector and
principal direction, which has to be tuned for different scenes.
A large k will cause errors in the linear structure calculation and
increase the number of false negative power lines. dd is used for
grouping power lines into individual spans. Only if the angle
between two lines is smaller than dd , these two lines can be
regarded as lying in the same line. A large dp and dd will make
it difficult to group power lines into individual spans.

In order to show how a variation in the above-mentioned
parameters will affect the results, we conduct the sensitivity
analysis. For the purpose of the analysis, we alter all parameters
from −30% to 30% with respect to the suggested values. The
analysis is conducted by floating one parameter and fixing the
rest of parameters. The accuracy of the above-mentioned scenes
with different parameters is shown in Fig. 13. The accuracy is
stable in the case of floating dd and slightly degraded in the
case of floating α and k. Although the accuracy in the case of
floating dl and dp are not stable, we can still achieve a promising
average accuracy. In each case, the minimum of the correctness
and completeness is no less than 90.11% and the Fscore is larger
than 90.90%, as given in the last two columns of Table I.

VII. DISCUSSION

A. Performance on the Large-Scale Data

The complexity of the segmentation depends on the solving of
McPM in the bipartite graph using the Kuhn–Munkres algorithm
[24], which is O(n2). This can be a drawback in the extraction
from large-scale point cloud sets.

This experimental scene contains 272 618 869 points and
the area is over 763 m by 4359 m. Since most power lines are
along the roadside, we let the region of interest (ROI) be the
area 15 m to the middle of the road in this experiment. The
road information can be obtained from the trajectory. Since it
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Fig. 14. Power line extraction from a large-scale point cloud set.

is an urban scene, the elevation of power lines is assumed to
be high. Therefore, components below 2 m will be regarded
as non-power-lines. Besides, if a point set Ωx

i contains more
than 10 000 points and less than 50% of points are lying in the
same line, Ωx

i will be labeled as a non-power-line component
and removed in the current iteration. In this way, all non-power-
lines are grouped together (black) and the rest of input points
are regarded as power lines (red), as shown in Fig. 14.

Fig. 14(a)–(e) are close-views of the extraction results. All
power lines in Fig. 14(a), (c), and (e) are extracted. A short part
of power lines is missing in Fig. 14(b), this is because that it is
not in the ROI. The top region of power lines in Fig. 14(d) is not
complete, this is because that the sag of power lines is heavy
in the high voltage line. Power lines are segmented into very
small pieces and regarded as non-power-lines. Although parts
of power lines are missing in B and D, we succeed to extract
most power lines.

In this experiment, we do not split power lines into individual
spans for the purpose of efficient extraction. Experiments were
done on a Windows computer, Intel Core i7-6900k, 3.20 GHz
processor with 64 GB of RAM. The run time in the extraction
is 98.56 s excluding the time for data loading.

B. Discussion of the Proposed Segmentation

How does the segmentation work? In the beginning, each
unique label contains only one point which means that each
point is a component. The number of labels in Vx is n, which
will be decreased during the update process. In order to converge
to a stable label configuration, we proceed the update process
iteratively. The number of the iteration ranges from 0 to n− 1,
and in each iteration, the proposed optimization updates labels
at the minimum cost. The segmentation result is determined by
perfect matchings of the bipartite graph. The capacity of the
perfect matching is equal to the energy in (9). Therefore, each
segmentation result can be determined by a perfect matching

Fig. 15. Performance of different segmentation methods. (a) Segmenta-
tion ground truth. (b) Performance of KMiPC. (c) Performance of KNNiPC.
(d) Performance of 3DNCut. (e) Performance of MinCut. (f) Performance of
the proposed McPM segmentation.

Fig. 16. Evaluation of different segmentation methods.

Fig. 17. Experimental scene with Gaussian noises. (a) Gaussian noise
N (0, 0.01). (b) Gaussian noise N (0, 0.02). (c) Gaussian noise N (0, 0.05).
(d) Gaussian noise N (0, 0.1).

and the optimal label configuration is achieved by solving the
McPM in graph G.

Why do we need the smoothness term in the energy function?
In the energy function formulation, the data term relies on the
principal direction and normal vector, which will group neigh-
boring spans into one component. Therefore, we use a smooth-
ness term to constrain the consistency of neighbor points’ labels
based on the Euclidean distance. Our smoothness term helps ad-
just points’ wrong labels based on its neighboring labels. Having
considered that MLS data are noisy and uneven, the smoothness
term is formulated by the robust estimator. The robustness of
the proposed estimator will be evaluated in Section VII-D.
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Fig. 18. Comparison of our segmentation using different estimators. (a) Correctness of different estimators. (b) Completeness of different estimators. (c) Fscore
of different estimators.

C. Comparison of Different Segmentation Methods

This section evaluates the segmentation performance of
KMiPC [11], KNNiPC [12], 3DNCut [13], MinCut [14], and
the proposed McPM in Fig. 15. Fig. 15(a) shows the segmen-
tation ground truth. Fig. 15(b)–(f) shows the performance of
KMiPC, KNNiPC, 3DNCut, MinCut, and the proposed McPM,
respectively. In the visualization, we use different colors to dis-
tinguish components.

KMiPC and 3DNcut segment objects depend on the Euclidean
distances between points and they require initializing the num-
ber of labels for each scene. The shortcoming is that they fail to
detect overlapping points between different objects. Although
KNNiPC and MinCut achieve electric poles successfully, they
assign spatially close power lines with the same label. In the per-
formance of McPM, both poles and power lines are segmented
effectively. Although the segmentation of overlapping regions
between vegetations and poles are worse than MinCut, we suc-
ceed to provide accurate line components for the subsequent
individual span extraction.

The quantitative evaluation method is similar to (12). The
correctness measures the ratio of correctly segmented objects in
the result and completeness measures the percentage of correctly
segmented objects in the reference. Fscore is the harmonic mean
of correctness and completeness. The comparison results are
shown in Fig. 16, which shows the superiority of our accuracy
to other methods.

D. Evaluation of the Proposed Robust Estimator

To evaluate the performance of our robust estimator, we add
different levels of Gaussian noisesN(μ, δ2) to our experimental
scene. μ is 0 and δ2 is selected from {0.01, 0.02, 0.05, 0.1}.
Points added with different levels of Gaussian noise are shown
in Fig. 17.

The evaluation of different estimators is shown in Fig. 18. We
test our segmentation performance using different estimators.
Performances of estimators are close to each other if δ2 is small,
e.g., in the case of N(0, 0.01). When we increase the value of
δ2 , the performance of all estimators will fall down. One can
find that the proposed estimator ρO is more accurate and robust
than other existing estimators in all cases.

VIII. CONCLUSION

This paper investigates a new method for power line extrac-
tion from mobile LiDAR point clouds. The extraction of power

lines is from components obtained from the optimal segmen-
tation. Our segmentation does not require the initial number
of targets and achieves accurate segmentation without human-
computer intersection. The main advantage of the proposed
extraction is that power lines are extracted from components
rather than from points. Each component belongs to one ob-
ject only, which is easy for the extraction process based on the
line property information. In order to deal with the Gaussian
noise generated in the data collection, we propose a new robust
estimator to improve the robustness of the segmentation. Ex-
periments show that the proposed power line extraction works
effectively for MLS data, and the line merging process is able
to extract individual spans accurately.

In the future, we will pay attention to the adaptive extraction of
power lines for dealing power lines with the heavy sag. Besides,
we also expect to explore the power line extraction in the forest
environment.
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