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A B S T R A C T

This paper aims to propose a cluster-based approach for trees’ nonphotosynthetic components extraction from
mobile LiDAR point clouds. The presented algorithm uses a bottom-up hierarchical clustering strategy to
combine clusters belonging to nonphotosynthetic components. The combination process depends on the dis-
similarity between two clusters. The measure in the proximity matrix calculation consists of a distance term
using the Euclidean distance and a direction term based on the principal direction, respectively. The main
contribution of this paper is to solve the optimization of cluster combination by minimizing the proposed energy
function and to extract nonphotosynthetic components through a hierarchical clustering process automatically.
Performance of the proposed nonphotosynthetic components extraction shows that we achieve the completeness
of 94.0%, the correctness of 98.9% and the F-score of 0.96 on the experimental urban scene. Besides, we succeed
to achieve promising results on the stem detection and individual tree segmentation based on the extracted
nonphotosynthetic component.

1. Introduction

Roadside vegetation is an important component of the urban en-
vironment and ecosystem, especially the street tree which plays a sig-
nificant role in the pollution reduction and urban landscape. The non-
photosynthetic component of an individual tree refers to its main stem
and branches, which is critical to retrieve the biophysical parameters,
e.g. the biomass productivity (Edson and Wing, 2011) and carbon sto-
rage (Yun et al., 2016), and monitor the tree growth, e.g. the diameter
at the breast height (DBH) (Kwak et al., 2007; Yao et al., 2012) and
plant density (Korpela et al., 2010). Nowadays, the light detection and
ranging (LiDAR) technique succeeds to collect 3D information of ob-
jects using high-density point clouds, which provides a chance for
mapping 3D tree structure accurately. The following is a brief discus-
sion of the related work on the nonphotosynthetic component extrac-
tion, including the stem detection and individual tree segmentation,
from mobile laser scanning (MLS) data and terrestrial laser scanning
(TLS) data.

The stem detection refers to the extraction of the main structural
axis of a tree, which includes points between the ground and the first
leaf branch. Lehtomäki et al. (2010) develop a method for the extrac-
tion of pole-like objects from MLS data. Their framework requires the
segmentation work to split each scan line, the clustering process to

merge the region of interest points, and the refinement step to combine
clusters from the same pole and recognize each pole-like object. The
problem is the low robustness to outliers, i.e. when there are scattered
points around stems, trunks are difficult to be detected. Hetti
Arachchige (2013) proposes a geometric-feature-based method for the
tree stem segmentation from MLS data in urban environments. Their
idea is to filter points from stems based on the principal direction fea-
ture which is calculated by exploring the variance of a point's neigh-
borhood. This method does not need any priori knowledge of the tree,
e.g. the size or height, and can be used for various kinds of tree
structures. However, the performance of the stem growing is degraded
by the break or hole on the stem caused by occlusion or data in-
completeness. Liang et al. (2014) propose a method for mapping large
forest plots with MLS data. They establish a local coordinate system to
detect points on a vertical planar first and then use a series of 3D cy-
linders to describe stem sections. They achieve a high performance in
the experimental forest, where stem points are from pole-like objects.
Xia et al. (2015) propose a method to detect the stem of bamboos from
TLS data. They succeed to distinguish neighboring stems and merge the
thin structure stems from the same bamboo without a cylinder fitting
process. However, a complex classification process is required before
the stem detection to classify stem points. Xu et al. (2018) propose a
stem detection method based on the dynamic programming technique
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with MLS data. The key steps include the detection process to extract
candidate trees and the optimization process to achieve optimal stems.
Their method works well in incomplete trees caused by the data col-
lection and occlusion, but the detection performance highly relies on
the circle fitting process, which incurs problems in the mix scene of
trees and other pole-like objects.

The individual tree segmentation refers to extract independent tree
crown points from input data. Pfeifer et al. (2004) propose a method for
the reconstruction of individual trees in forests from TLS data. At the
beginning, they model local branches of each tree by using the circular
cylinder fitting. Then, they capture the axis direction and the axis po-
sition by setting a radius for the cylinder fitting. Finally, they track
cylinders along branches and reconstruct the entire tree. They achieve a
high performance in obtaining individual trees in the forest, where most
trees stand vertically. Pu et al. (2011) propose a framework for re-
cognizing different objects from MLS data. It starts with an initial rough
classification, including the ground surface, objects on the ground, and
objects off the ground. Based on the obtained segments’ features, e.g.
the size, shape, orientation and topological relationships, the objects on
the ground are assigned to more detailed classes such as traffic signs,
trees, and building walls. They do not require samples for training in
the classification and succeed to recognize points from an individual
tree. However, this knowledge-based method highly relies on the
parameter setting, especially the vegetation region with various point
densities. Raumonen et al. (2013) propose a method for efficiently
obtaining the nonphotosynthetic component of individual trees, in-
cluding trunks and branches, from TLS data. Their idea is to make a
flexible cylinder model to reconstruct the surface of trees, after which
the branches are modeled as collections of cylinders. They perform well
in the nonphotosynthetic component extraction from artificial trees,
however, the validation with a large number of trunks in the real scene
is unmentioned in their work. Wu et al. (2013) propose a voxel-based
method to segment tree crowns from MLS data. Their voxel-based
morphological model succeeds to make full use of points’ spatial in-
formation in the vertical and horizontal directions. They provide an
improvement over 2D neighborhood search methods in the split of
overlapping tree crowns. However, they detect the multiple-stemmed
street tree as several separated trees in the urban scene. Tao et al.
(2015) develop a shortest-path algorithm to help segment the over-
lapping region of trees from MLS data. They first detect trunks based on
the assumption that trunks are separated from each other, and then
segment crowns based on the fact that vascular plants tend to minimize
the transferring distance to the root. They achieve a high accuracy in
extracting the roadside trees from both TLS data and MLS data. How-
ever, incomplete stems are potential to be missed in their trunks de-
tection. Fan et al. (2016) present a classification method to localize
urban trees with MLS data. They organize off-ground points by the
voxel technique first, and then localize candidate trees by setting
thresholds for the elevation. After this, they extract object features
based on the geometric information to classify tree points. They achieve
high accuracy in the experimental palm trees, however, the non-adap-
tive thresholding method is easy to cause problems in a general urban
scene with different tree structures. Li et al. (2016) propose a growing
strategy to segment tree crowns from MLS data. They first remove ar-
tifacts by a coarse classification process to obtain the candidate tree
clusters. After that, they select tree seeds for the following trunk points
growing. Finally, they propose a dual growing process to separate one
tree from others by circumscribing a trunk in a growing radius and
segment a crown in the constrained growing region. Their method
works well in different street trees, however, their tree growing process
fails to deal with the trunk curvature and incompleteness. Zhong et al.
(2017) provide a top-down segmentation pipeline for the individual
tree segmentation, which includes a connectivity-based spatial clus-
tering, a stem-based segmentation, and a normalized-cut-based refine-
ment. This algorithm performs well in the split of neighboring trees by
using their modified node similarity calculation. The problem is that the

localization of stems relies on the horizontal histogram of the for-
mulated nodes, which is easy to be affected by the point density.

Both MLS and TLS system succeed to collect the side information of
objects using 3D point clouds. TLS system is flexible to collect data in
different environments, such as the mountain and forest area. However,
TLS data are limited to a small-scale scene, and the collection usually
requires multiple scans, which brings the task of the point registration.
In comparison, MLS system is easy to provide abundant side informa-
tion of street trees, e.g. the trunks and branches, in a large-scale region.
In MLS data collection, the mean point density along the trajectory is
over 750 pts/m2, which are suitable for the urban tree research.
However, due to the fact that scenes in MLS data are more complicated
than TLS data, e.g. much contamination generated in the collection and
various artifact objects, the accuracy of the tree point extraction is far
from being desired.

The objective of this paper is to propose a new bottom-up hier-
archical clustering algorithm to the nonphotosynthetic component ex-
traction from MLS point clouds. The clustering process starts with a
number of clusters, and then conducts a series of merging operations to
combine clusters from the same nonphotosynthetic component. Two
main contributions of this paper are: (1) we provide a new clustering
approach to the nonphotosynthetic component extraction from MLS
point clouds, and (2) we succeed to optimize the cluster combination
based on minimizing the proposed energy function. Our cluster com-
bination is automatic and is globally optimal, which provides a better
extraction result than methods using the greedy strategy in the
grouping of the interest region.

This paper is organized as follows. Section 2 overviews the frame-
work of the proposed nonphotosynthetic component extraction algo-
rithm. Section 3 focuses on the calculation of the dissimilarity between
clusters. Section 4 presents the optimization of the cluster combination
based on the energy function minimization. Section 5 shows experi-
ments to evaluate the performance of the proposed extraction. The
conclusions are outlined in Section 6.

2. An overview of the proposed nonphotosynthetic component
extraction algorithm

The process of the nonphotosynthetic component extraction is
shown in Fig. 1. The first step is the data preprocessing for the outlier
removal and the ground point filtering. The outlier removal is based on
the calculation of the mean μ and standard deviation σ of k-nearest
neighbors (Rusu et al., 2008). In our work, k is 30 and points between
μ− σ and μ+ σ are regarded as valid points. To improve the efficiency
of data processing, ground points are filtered before the subsequent
component extraction. As mentioned in the work of Xu et al. (2018),
road points are much denser than off-ground points in MLS data in the
urban environment. Since road points are lower than off-ground points,
peaks in the elevation histogram can be used to find the elevation
threshold for the ground filtering. Points that are lower than the ele-
vation of the achieved peak point are regarded as ground points. Details
of optimizing the peak point selection for the ground point removal are
shown in Xu et al. (2018).

The second step aims to extract the points from the stems or bran-
ches, and merge them into a complete nonphotosynthetic component
based on a bottom-top hierarchical clustering strategy. Assume that the
input point set is P and the cluster set is C. Each element in C is a cluster
containing one or more points from P. The goal is to achieve that each
element in C is a point cluster of the complete nonphotosynthetic
component of an individual tree. Main steps of the proposed hier-
archical clustering are as follows.

(1) Start with a cluster set C and each element contains a point from P.
(2) Formulate the proximity matrix by calculating the dissimilarity

between clusters.
(3) Solve the optimal combination solution to merge clusters and
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update the set C.
(4) Repeat (2) and (3) until C converges, i.e. the number of clusters in C

is stable.

Keys in the above hierarchical clustering process are the step (2) and
(3) which will be fully discussed in Sections 3 and 4, respectively.

The third step is the refinement process, which aims to (1) address
the over-clustering, i.e. the nonphotosynthetic component of an in-
dividual tree is grouped into several clusters, (2) address the under-
clustering, i.e. a single cluster contains points from more than one in-
dividual tree and (3) remove false nonphotosynthetic components, e.g.
the streetlights and traffic signs. The refinement is based on the rule
that each individual tree has only one main root, and details are as
follows.

First, we subtract the spatially closest ground point for each off-
ground point achieved in the preprocessing step to obtain its elevation.
Then, we perform the Euclidean distance clustering to group low points
(< 1m) as root clusters for the following refinement. (1) Separated tree
branch clusters, which are the main reason of appearing the over-
clustering, will be combined in the refinement as shown in Fig. 2(a). We
detect clusters that are 3 m above the ground region and merge them
with their closest root cluster. (2) A group containing more than one
root cluster will be divided into more clusters as shown in Fig. 2(b). We
divide the group into two different clusters by assigning points to their
closest root cluster using the minimum distance rule. (3) Pole-like

objects are easy to be wrongly detected as trunks in the clustering as
shown in Fig. 2(c). The distinguish between trees and other pole-like
objects is based on the points’ distribution in the vertical direction. We
calculate the vertical kurtosis (Zhong et al., 2017) for each individual
tree's nonphotosynthetic component to remove outlier components. If
the kurtosis of a nonphotosynthetic component cluster falls in
μk− 1.5σk and μk+ 1.5σk, it will be regarded as a valid component. μk
and σk are the mean and standard deviation of the kurtosis of all ex-
tracted nonphotosynthetic components.

3. The calculation of the dissimilarity between clusters

In a general hierarchical clustering approach, we are required de-
fining a symmetric matrix called the proximity matrix PM to calculate
the dissimilarity between clusters. The (i, j)th element of the matrix, i.e.
PM(ci, cj), measures the dissimilarity between the cluster ci and cj in C.
The clustering principle is that two clusters with a low dissimilarity are
preferred to be combined into one cluster. In our work, the calculation
of the dissimilarity is based on a distance term dis(pi, pj, ci, cj) and a
direction term dir(pi, pj, ci, cj). The distance term dis(pi, pj, ci, cj), which
is defined as the measure of the distances between the point pi and pj, is
formed as

= −p p c c p pdis( , , , ) || ||,i j i j i j (1)

where ||pi− pj|| is the Euclidean distances between the point pi and pj.

Fig. 1. Main steps of the proposed nonphotosynthetic component extraction, including (1) the preprocessing step to split the input data into ground and off-ground points, (2) the
clustering step to extract and merge nonphotosynthetic component points and (3) the refinement step to remove false nonphotosynthetic components in the result.

Fig. 2. Refinement process. (a) Separated tree branch clusters are merged with their spatially closest root cluster. (b) A nonphotosynthetic component containing two root clusters is
separated into two components. (c) The false component is removed based on the filtering of its vertical kurtosis.
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Our second term is based on the principal direction, which is estimated
by the singular value decomposition (SVD) method. The principal di-
rection at a point pi is estimated from its k-nearest neighbors. From SVD
we have

=× × × ×
⊤D U S V· · ,k k k k3 3 3 3 (2)

where D is the input matrix formulated by k-nearest neighbors of pi and
will be decomposed into the matrices U, S and V. For a point pi, denote
the first, second and third column vector of V as V p

1
i, V p

2
i and V p

3
i, re-

spectively. Denote the diagonal elements in S as S p
(1,1)

i , S p
(2,2)

i and S p
(3,3)

i ,
respectively, which are regarded as eigenvalues of DD⊤ in the decom-
position. The principal component V p

1
i corresponding to the largest ei-

genvalue S p
(1,1)

i will be chosen as the principal direction at the point pi.
The direction term dir(pi, pj, ci, cj), which is defined as the measure of
the direction differences at the point pi and pj, is formed as
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The numerator in Eq. (3) aims to evaluate the principal direction
differences at the point pi and pj. The denominator in Eq. (3) aims to
evaluate the weight of the principal direction in the decomposed vector
V. If the point is from the nonphotosynthetic component, Vi will be
consistent with the direction of the tree growth and usually large than
0.9. If two clusters share the similar principal direction, the direction
term will be small, which means the combination of these two clusters.

According to our priori knowledge, the distances between the street
trees and the sensor range from 5 m to 30 m in MLS data. For an in-
dividual tree, the density of points from the nonphotosynthetic com-
ponent is higher than leaves. In order to separate the nonphotosynthetic
component and leaves, we add a coefficient to the formulation of the
proximity matrix PM to balance the distance and direction term as

= + −c c λ p p c c λ p p c cPM( , ) ·dis( , , , ) (1 )·dir( , , , ),i j i j i j i j i j (4)

where

=
∑ ∈

− −

λ
k

ep k p
p p

* ( )
|| * ||

i
i

and

= − ∈ ∈p p p p p c p c{ , } argmin || ||: , .i j p p i j i i j j{ , }i j

k(pi) is the set of k-nearest neighbor points of pi. The coefficient λ ranges
from 0 to 1, which depends on the point's neighborhood density. In our
work, the dissimilarity between two clusters is small if they are spatially
close and they have the consistent principal direction. When both two
clusters are from nonphotosynthetic components, the dissimilarity is
dominated by the distance term, otherwise, the dissimilarity is decided
by the direction term.

In our hierarchical clustering process, if a cluster contains a large
planar area, i.e. both its length and width are larger than 0.5m, this
cluster is regarded as not from nonphotosynthetic components and will
be removed before the subsequent cluster combination. This rule works
well for the facades and vehicles removal. Besides, after the clustering
process, clusters with points less than 100 will be removed. This cri-
terion works well for the leaves removal. Since distances between leaf
clusters are larger than nonphotosynthetic component clusters, and
there is no consistent principal direction in leaf clusters, the dissim-
ilarity between leaf clusters and other clusters are large. A leaf cluster
tends to be converged in a local region, therefore, it usually contains a
small number of points. The removal of nonphotosynthetic component
clusters based on the planar detection brings isolated point clusters

after the clustering process. Therefore, isolated clusters, which cannot
be assigned with a root cluster in 5m, will be removed after the hier-
archical clustering process.

4. Hierarchical clustering based on the combination optimization

4.1. Combination optimization by the energy function minimization

The general hierarchical clustering approach uses a greedy strategy
to combine clusters. The idea is to find two most similar clusters based
on the proximity matrix and combine them into one cluster. The pro-
blem is that the greedy strategy is sensitive to the parameter setting and
easy to incur a local optimization. In this section, we will formulate the
cluster combination as a problem of the energy function minimization
and derive the update formulation for achieving the optimal solution.

Assume that there are n clusters in C. We define a symmetrical
matrix N called the combination matrix to represent the combination
solution. The (i, r)th element in N is denoted as Nir, which has a binary
value {0,1}. If Nir is 1, Nri will be also 1, which means that the cluster ci
will be combined with cr in the clustering process. The combination
between ci and cr is weighed by a weight matrix W as Wir,ri. The matrix
W is also symmetrical andWir,ir is defined as zero. In the optimization of
the cluster combination, we consider two constraints in the energy
function formulation, i.e. the uniqueness constraint and the optimiza-
tion constraint. The uniqueness constraint is based on the fact that at
each hierarchy, a cluster can be combined with only one cluster in the
combination process. The uniqueness constraint is formulated as

∑ ∑⎛

⎝
⎜ − ⎞

⎠
⎟

= =

N1 .
i

n

r

n

1 1
ir

2

(5)

Eq. (5) means that in each row of N, there is only one element assigned
the value 1. The optimization constraint aims to find the combination
solution at the minimum cost based on the calculated proximity matrix,
which is defined as

∑ ∑−
= =

W N N ,
i

n

r

n

1 1
ir,ri ir ri

(6)

where

=
+

− = +W
e

D c c c c2
1

1, PM( , ) PM( , ).γ D i r r iir,ri ·

γ is to tune the smoothness of the weight, e.g. γ=0.1 in our work. The
weight Wir,ri tends to be 0 when the combination cost D is small. The
relationship between the weight and the cost is shown in Fig. 3.

Based on the above-mentioned two constraints, the object energy
function is

∑ ∑ ∑ ∑= − + ⎛

⎝
⎜ − ⎞

⎠
⎟

= = = =

E W N N N1 .
i
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r

n

i

n

r

n

1 1
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1 1
ir

2

(7)

In order to optimize Eq. (7), let us consider the energy function Eq.
(7) in a more general case as

∑ ∑ ∑ ∑ ∑ ∑= − + ⎛

⎝
⎜ − ⎞

⎠
⎟

= = = = = =

E W N N N1 .
i

n

r

n

j

n

s

n

i

n

r

n

1 1 1 1
ir,js ir js

1 1
ir

2

(8)

In Eq. (8), we do not require the symmetrical property of N, and in
order to obtain the globally optimal, we let the combination cost of Nir

depend on the sum cost of all other elements Nir. At the beginning, we
expand the uniqueness constraint as
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where δij is a binary value, i.e. if i= j, δij is 1, otherwise δij is 0.The trick
in Eq. (9) is

∑ = + +⋯+ + +⋯+
= + +⋯+ + +⋯+
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Then, Eq. (8) is rewritten as
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In order to minimize Eq. (10), we are required deriving the update
formulation to decrease the energy through the update process. Our
minimization is based on the analysis of the energy change after the
update process. In Eq. (10), if the value of an element in N is changed

Fig. 3. Function of the weight Wir,ri and the combination cost D.

Fig. 4. Example of the proposed hierarchical clustering approach. (a)–(c) show the current cluster set C. (d)–(f) show the initial N calculated by the spatially neighborhood information in
(a), (b) and (c), respectively. (g)–(i) show the achieved optimal combination solution for clusters in (a), (b) and (c), respectively.
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Fig. 5. Imagery of the test scene @Google 2017 map data (48°51′01.3″N, 2°19′57.9″E). The red line is the manually generated vehicle trajectory based on the point density. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 6. Performance of the proposed nonphotosynthetic component extraction approach.

Fig. 7. Comparison between the reality and MLS point clouds of trees.
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from Npq to ′Npq, the output energy EO will be
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The energy difference between the input EI and the output EO
through the update process is calculated as

= −
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where ϕpq is the required update solution, which meets the condition
that if ϕmn > 0, ′ =N 1pq , otherwise ′ =N 0pq . Under this condition, (1) if
ΔNpq=0, ΔE will be 0; (2) if ΔNpq > 0, ΔE will be negative; (3) if
ΔNpq < 0, ΔE will be also negative. Therefore, the energy will not be
increased in all cases based on the provided update formulate as

(13)

In the implementation of our hierarchical clustering, in order to
keep the symmetrical property of N, when we update Nir, we will also
update Nri as Nir. The update criterion is based on the calculation of

⎡⎣∑ ∑ ′ + ⎤⎦= = W N· 1j
n

s
n

1 1 ir,js js . The initial N is based on the spatial

neighborhood information, i.e. if the cluster ci is close to cr (< 0.2 m),
Nc c,i r will be assigned as 1. In the update process, for each element Nir,
we will update it based on the proposed criterion. After we update all
elements in N, we start to combine clusters using the updated N. If the
(i, r)th element Nir is 1, combine ci and cj into one cluster. To converge
the clustering process, we set a cutoff distance threshold as the diagonal
element of PM, e.g. 0.2 in our work. If the combination cost is larger
than the threshold, the cluster will be combined with itself, which
means the convergence. The update process conducted iteratively until
the cluster set C converges. The number of final clusters is inversely
proportional to the cutoff distance. The computational complexity of
each update process depends on the size of N which is O(n2)

4.2. Implementation of the proposed hierarchical clustering approach

Key steps in the implementation of the proposed hierarchical clus-
tering include (1) computing the proximity matrix PM using Eq. (4), (2)
removing clusters that are not from nonphotosynthetic components,
e.g. those clusters in a large planar area, (3) updating the value of
elements in N based on the proposed criterion and combining clusters
using the updated N.

The following is a simulated example to show the implementation of
the hierarchical clustering based on the optimal combination. As shown
in Fig. 4(a), the input P is {p1, p2, p3, p4, p5, p6}.

Step 1: initialize the cluster set C as {c1, c2, c3, c4, c5, c6}, where
c1= {p1}, c2= {p2}, c3= {p3}, c4= {p4}, c5= {p5} and c6= {p6};
Step 2: initialize elements in N6×6 based on the neighborhood in-
formation as shown in Fig. 4(d);
Step 3: calculate the proximity matrix PM for the current cluster set
C;
Step 4: update elements in N based on the proposed criterion to
obtain the optimal combination as shown in Fig. 4(g);
Step 5: from Fig. 4(g), we know that N12, N21, N33, N44, N56, N65 are
1, therefore, combine clusters c1 and c2 as a new cluster ′c1 , and
combine c5 and c6 as a new cluster ′c4. The cluster c3 and c4 are
unchanged and renamed as ′c2 and ′c3, respectively.
Step 6: update the cluster set C as ′ ′ ′ ′c c c c{ , , , }1 2 3 4 ;

Fig. 8. Close-view of our performance on regions 1–4.
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Now the first iteration is done. Repeat steps 2–6. Fig. 4(e) and (f)
shows the initial N corresponding to Fig. 4(b) and (c), respectively.
Fig. 4(h) and (i) are the achieved optimal combination solution in the
second and third iteration, respectively. In Fig. 4(b), ′c3 is removed
because it is from a large planar area, which is regarded as not the
nonphotosynthetic component. Finally C converges to ″ ″c c{ , }1 2 as solved
in Fig. 4(i). The cluster ″c1 and ″c2 are regarded as two complete non-
photosynthetic components.

5. Experiments and evaluations

5.1. Performance of the nonphotosynthetic component extraction

This section aims to evaluate the performance of the non-
photosynthetic component extraction based on the proposed hier-
archical clustering approach. The test urban scene is located in Paris
collected by MLS system in January 2013 and the imagery of the test
scene is shown in Fig. 5. The size of the test data is 173 m by 352m
containing 49,512,718 points. Details of the data collection description
are shown in Vallet et al. (2015).

Our nonphotosynthetic component extraction results are shown in

Fig. 6. TP (true positive) means that a nonphotosynthetic component is
extracted correctly from the input scene. FN (false negative) means that
a nonphotosynthetic component is wrongly detected as the background
points. FP (false positive) means that a background cluster is wrongly
extracted as a nonphotosynthetic component. The ground truth of
nonphotosynthetic components for the reference is obtained manually
from the input scene. We segment the nonphotosynthetic component of
each individual tree attentively through the point cloud visualization
tool CloudCompare (http://www.danielgm.net/cc/). We add some
photographs of individual trees as reference for the better comparison
between reality and MLS point cloud as shown in Fig. 7. The first row
shows the photographs of real trees, the second row shows their MLS
point clouds and the third row shows the manually segmented non-
photosynthetic components.

In order to show the close-view of our extraction results, we de-
monstrate them in 10 regions as shown in Figs. 8:1–4 and 9 :5–10. In
our results, if street trees are close to the vehicle LiDAR sensor
(< 10m), trunks and branches of a tree will be completely extracted as
shown in regions 1, 2, 3, 4, 8, 9, 10. However, if trees are far from the
sensor (> 30m), extraction results may only contain the main stem and
branches of a tree due to the sparsity of tree points as shown in regions

Fig. 9. Close-view of our performance on regions 5–10.
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5, 6, 7.
The close-view of TP is shown in Fig. 11. In the experimental scene,

trees that are less than 50m from the sensor can be extracted effectively
with the proposed extraction algorithm. The algorithm performs well
on those common cases of street trees as shown in Fig. 11(a)–(c). In the
extraction, the challenge #1 is that a tree contains a short main stem as
shown in Fig. 11(e)–(h). In Fig. 11(g) and (l), an individual tree seems
contain several stems in point clouds, which is because their short roots
are occluded by the low elevation objects. This challenge is difficult for
methods based on the cylinder fitting (Liang et al., 2014; Pfeifer et al.,
2004; Raumonen et al., 2013). The ideal cross-section of an individual
tree stem is represented as the half-moon shape in 3D point clouds,
which can be fitted by using the cylinder model as shown in the first
column of Fig. 10. However, in the challenge #1, it is difficult to set a
priori model for those stems as shown in the second and third columns
of Fig. 10. The challenge #2 is that stems are covered by dense leaves as
shown in Fig. 11(d), (i) and (j). This challenge is addressed by our di-
rection term, which aims to analyze the principal direction of current
dense points. The challenge #3 is that a tree contains a thin stem as
shown in Fig. 11(k). In this challenge, although we miss some branches
which are close to treetops, tree stems are extracted accurately. The
challenge #4 is the split of nonphotosynthetic components from over-
lapping trees as shown in Fig. 11(i), which is solved effectively by the
proposed extraction algorithm.

It is worth noting that as shown in Fig. 9, the input data contain
trees with parallel branches. This is because trees are scanned for sev-
eral times in the data collection, which means that there is a registra-
tion error in the MLS point cloud. Those unregistered trunks will also be
extracted as nonphotosynthetic components of trees, because these
points are in a high density and have consistent principal direction.
Although the inaccurate registration will cause errors in the estimation
of the diameter at breast height of trees, the number of non-
photosynthetic components in the input data will not be affected.

The close-view of FN is shown in Fig. 12. Fig. 12(a) and (b) are from
the region 3 and 4, respectively. The missing tree in Fig. 12(a) is caused
by its extremely low elevation (< 2m). The missing tree in Fig. 12(a)
and (c) are caused by that their roots are occluded completely and the
rest of tree points do not contain the sufficient principal direction in-
formation. When the incompleteness of a tree stem is larger than 80%,
we will miss it in the extraction.

The close-view of FP is shown in Fig. 13. Fig. 13(a) and (b) are from
the region 4 and 7, respectively. Errors caused by the mix of the

streetlight and branches. Streetlights in Fig. 13 are extracted as non-
photosynthetic components in our result as shown in Figs. 8:4 and 9:7.

To evaluate our extraction results, we calculate the correctness r,
completeness p and F-score f as

=
+

=
+

= ×
× + +

r p fTP
TP FP

, TP
TP FN

, 2 TP
2 TP FP FN

.
(14)

The correctness measures the ratio of correctly extracted non-
photosynthetic components in results, the completeness measures the
percentage of correctly extracted nonphotosynthetic components in the
reference. F-score is the harmonic mean of correctness and complete-
ness. The evaluation of our performance on each region is shown in
Table 1. We extract all nonphotosynthetic components successfully in
regions 1, 6, 8, 9 and 10. Except for FP results in regions 4 and 7, our
extracted nonphotosynthetic components are all accurate. There are
182 trees in the test scene and we extract 172 individual non-
photosynthetic components from the input MLS data. The average
correctness, completeness and F-score are 98.9%, 94.0% and 0.96, re-
spectively.

The above-mentioned extraction were done on a Windows 10 Home
64-bit, Intel Core i7-4790 3.6GHz processor with 16 GB of RAM and
computations were carried on Matlab R2017b. It took us around 87min
to finish the entire extraction of 172 out of 182 nonphotosynthetic
components from MLS data. The disadvantage of the extraction algo-
rithm is the high memory complexity (O(n2)), which can be improved
by sparse storage techniques.

5.2. Performance of the stem detection

After we obtained the nonphotosynthetic components from input
data, we can detect the main stem of each individual component based
on the consistency of the growing direction. We perform the Euclidean
clustering on each extracted nonphotosynthetic component and then
generate a voxel for each cluster. After this, we calculate the principal
direction between each two neighbor voxels. Once there exist paths
with different directions (> 30°) and both paths are longer than 0.5 m,
we extract points between the split point and the ground point as the
stem points. Take the nonphotosynthetic component in Fig. 14(a) as an
example, Fig. 14(b) shows the result of the Euclidean clustering on
component points, and Fig. 14(c) shows the generated voxels for each
cluster and the obtained split point based on the path direction.

Results of our stem detection are shown in Fig. 15. We detect 164

Fig. 10. The cross-section of individual trees.
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out of 172 individual stems as shown in Fig. 15(a). Fig. 15(b) is the
close-view of the region A in Fig. 15(a), which is a mix of trees with
different sizes and shapes. Fig. 15(c) is the close-view of the region B in
Fig. 15(a), which mostly contains common street trees. Fig. 15(d) is the
close-view of the region C in Fig. 15(a), which mainly contains thin
stems.

In order to demonstrate the superiority of the proposed method on
stem detection, we show the comparison with other methods, including
Lehtomaki10 (Lehtomäki et al., 2010), Hetti13 (Hetti Arachchige,
2013), Liang14 (Liang et al., 2014), Xia (Xia et al., 2015) and Xu (Xu
et al., 2018). Table 2 shows the description of datasets and test scenes in
the mentioned stem detection methods.

Our stem detection is based on the nonphotosynthetic components,
therefore, low robustness caused by scatter points around stems in
Lehtomäki et al. (2010) will not appear in our detection. The split point
is detected based on the path direction of the generated voxels, which is

insensitive to the problem in Hetti Arachchige (2013) caused by the
small break or hole on stems. Besides, our stem detection does not rely
on the shape fitting used in Liang et al. (2014), Xu et al. (2018) which
fails to work well when stems are not naturally separated or do not
stand vertically. In the implementation, the proposed stem detection
does not require a classification process as in Xia et al. (2015) and
works automatically in the complex urban environment. Quantitative
comparison is shown in Table 3, we achieve the highest correctness,
completeness and F-score in our experimental scene.

5.3. Performance of the individual tree segmentation

For each nonphotosynthetic component, the leaf region is defined as
a cylinder, which ranges between the split point achieved in the stem
detection and the top of its nonphotosynthetic component. The axis of
the cylinder is the line fitted by the stem points, and the radius is the

Fig. 11. The close-view of the true positive results in the extraction.
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furthest distance between the nonphotosynthetic component points and
the axis line as shown in Fig. 16(a). In the individual tree segmentation,
we first find all leaf regions, and then assign leaf region points to their
closest nonphotosynthetic component as shown in Fig. 16(b).

Results of our individual tree segmentation based on the extracted
nonphotosynthetic components are shown in Fig. 17. One disadvantage
is that artifact objects mixed in leaf regions will be regarded as tree
crown points.

In order to demonstrate the superiority of the proposed method on
individual tree segmentation, we compare our performance with other
segmentation methods, including Pu11 (Pu et al., 2011), Wu13 (Wu
et al., 2013), Fan16 (Fan et al., 2016), Tao15 (Tao et al., 2015), Li16 (Li
et al., 2016) and Zhong17 (Zhong et al., 2017). Table 4 shows the de-
scription of datasets and test scenes in the mentioned individual tree
segmentation methods.

Our individual tree segmentation is based on the nonphotosynthetic
component extraction results which succeed to obtain those curved
trunks. This is difficult for methods (Tao et al., 2015; Li et al., 2016),
which mainly proposed for trees growing vertically. As shown in
Fig. 17, our test scene is much more complex than (Fan et al., 2016),
which shows the high applicability of the proposed segmentation al-
gorithm for the mix of streets trees. The assignment of leaf points is
based on the Euclidean distance rule rather than the statistic analysis of
points which depends on the point density as in Zhong et al. (2017). In
the implementation, we do not require the complex parameter setting
and much priori criteria as in the knowledge-based method (Pu et al.,
2011). Besides, we do not have to generate voxels for all point clouds as
in Wu et al. (2013), which is easy to be time-consuming and lose details
of tree branches in the segmentation.

Quantitative comparison is shown in Table 5, Wu13 and Tao12
achieve a higher correctness and completeness than us, this is because

Fig. 12. The close-view of the false negative results in the extraction.

Fig. 13. The close-view of the false positive results in the extraction.

Table 1
Evaluation of the extracted nonphotosynthetic component.

Region Reference TP FN FP r (%) p (%) f

1 14 14 0 0 100 100 1
2 14 13 1 0 100 92.9 0.96
3 15 13 2 0 100 86.7 0.93
4 43 42 1 1 97.7 97.7 0.98
5 9 6 3 0 100 66.7 0.80
6 12 12 0 0 100 100 1
7 20 17 2 1 94.4 89.5 0.92
8 17 17 0 0 100 100 1
9 14 14 0 0 100 100 1
10 24 24 0 0 100 100 1
Total 182 172 9+2 2 98.9 94.0 0.96
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that most test trees in their work are in a similar shape and have a large
diameter at breast height, e.g. the plane tree and camphor tree in Wu13
(Wu et al., 2013), and the pecan and pinus in Tao15 (Tao et al., 2015).
In the comparison of the completeness, the accuracy of Li16 (Li et al.,

2016) and Zhong17 (Zhong et al., 2017) is a little higher than us, this is
because that our missing trees are almost occluded completely in MLS
data as discussed in the FN nonphotosynthetic component extraction in
Fig. 12.

6. Conclusions

This paper investigates an automatic cluster-based algorithm for
trees’ nonphotosynthetic components extraction from MLS data. In the
extraction, we do not require initializing any priori knowledge of input
trees, e.g. the number, location and shape. The combination of non-
photosynthetic component points is globally optimized by minimizing
the proposed energy function based on the Euclidean distance and

Fig. 14. Detection of the split point. (a) Extracted nonphotosynthetic component points. (b) Euclidean clustering of (a). (c) Generated voxels based on (b).

Fig. 15. Performance of the stem detection based on the nonphotosynthetic component extraction results.

Table 2
Description of datasets and test scenes in the stem detection.

Algorithms Dataset Test scene

Scanner Density (points/m2) Environment Type of trees Number of trees Time of acquisition

Lehtomaki10 MLS / Suburban area / 79 /
Hetti13 MLS / Urban area Mixed 42 /
Liang14 MLS / Mixed forest Spruce, birch 80 /
Xia15 TLS 1000 Homogeneous forest Bamboo 166 11/2013
Xu2018 MLS 750 Residential area Mixed 129 10/2015
Proposed MLS 700 Urban area Mixed 182 01/2013

Table 3
Comparison with other stem detection methods proposed for ground-based LiDAR.

Algorithm Lehtomaki10 Hetti13 Liang14 Xia15 Xu2018 Proposed

Evaluation r 86.5 97.5 / 93.0 95.7 98.80
p 83.5 92.5 87.5 88.0 94.2 95.34
f 0.85 0.95 / 0.90 0.95 0.97
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principal direction. The proposed algorithm succeeds to extract non-
photosynthetic components from a complex urban environment.
Performances of the stem detection and individual tree segmentation
based on the extracted nonphotosynthetic components are competitive
against the state-of-the-art methods in terms of the correctness, com-
pleteness and F-score. Future work will focus on the nonphotosynthetic

component extraction from different terrain areas where tree roots are
difficult to be found.
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