
RESEARCH ARTICLE

A Minimum-Cost Path Model to the Bridge Extraction from Airborne
LiDAR Point Clouds

Sheng Xu1 • Shanshan Xu1

Received: 20 December 2017 / Accepted: 3 June 2018 / Published online: 22 June 2018
� Indian Society of Remote Sensing 2018

Abstract
Nowadays, bridges have played a significant role in human transportation networks. However, less attention has been paid

to the bridge extraction from the countryside environment. This paper aims to propose a three-step method for the bridge

extraction from airborne LiDAR point clouds. First, we propose a chain-code-based method to delimit land/water interface

from the input scene. Second, we perform an angle testing process to extract candidate bridge points based on the shoreline

delimitation result. Third, we calculate the cost of paths across the water body. A path whose cost is less than an adaptive

threshold will be selected as a bridge path. The main contribution of this paper is that we formulate an energy function to

calculate the cost of each potential bridge path. The optimal path, which achieves the minimum cost, is solved by the

proposed minimum-cost path model. The developed extraction method does not rely on the geometric shape of rivers and

works well in different types of bridges. Experiments show that the presented method succeeds to obtain all bridges in six

small bridge scenes and one large complex scene, which are promising results in the bridge extraction.

Keywords Bridge extraction � ALS � Point clouds � Dynamic programming � Optimization

Introduction

A bridge is a structure built to span the gap between two

lands without closing the way underneath, which is

important to human transportation networks. The common

key step in the inspection and health monitoring of bridges

is the bridge extraction (Bian et al. 2012; Liu et al. 2010).

Nowadays, the existing bridge extraction methods are

mostly proposed for 2D images. Han et al. (2007) detect

bridges from the satellite imagery using an integrated

algorithm. Their integrated method is composed of two

steps: the segmentation of the river and background based

on a data driven-strategy and (2) the detection of bridges

based on a knowledge-driven strategy. Chaudhuri and

Samal (2008) achieve the bridge extraction from the multi-

spectral imagery using a four-step approach. First, they

classify pixels into water, concrete and background based

on a supervised classification technique. Second, they

extract potential bridge pixels by exploiting the geometric

constraints of bridges. Third, they group those potential

bridge pixels into candidate bridges based on their con-

nectivity and geometric properties. Fourth, they filter false

bridges based on the direction of the river. Gu et al. (2011)

propose a hierarchy algorithm for extracting bridges from

optical images. In the beginning, they set thresholds to

obtain coarse water bodies using the edge information.

Both the texture information and spatial coherence will be

used to refine water bodies. After detecting water bodies,

they regard objects across river regions as candidate

bridges and remove false bridges based on the geometric

information and the location between bridges and the river.

The main problem in the bridge extraction from 2D images

is that they are difficult to detect bridges flying over non-

water regions, e.g. islands and ships.

Nowadays, ALS (airborne laser scanning) data have

succeeded to collect the accurate 3D information of

objects, which provides a new solution for achieving a

better extraction result. However, until now, less attention

has been paid to the bridge detection from LiDAR data.

In the work of Smeeckaert et al. (2013), they provide an

automatic workflow for the classification of land and water.
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Features input for their supervised learning are based on

3D LiDAR point coordinates and flight-line information.

Their results output by the classifier are merged with the

contextual knowledge to refine the classification. They

succeed to achieve a high classification accuracy in dis-

tinguishing the water and non-water region. However, they

do not show how to extract individual bridges from the

classification results. In the method of Sithole and Vos-

selman (2006), they detect bridges based on the topological

information in the cross-section of a landscape. Their

detection is adaptable to different bridge designs. However,

their algorithm requires adding appropriate base points in

the gaps left by the water body to identify seed points in the

bridge detection. In the work of Duan et al. (2014), they

propose a bridge extraction algorithm by the combination

of an adaptive morphological filter and a skeleton extrac-

tion process. First, a morphological filter is designed to

classify the data into ground points and non-ground points.

Second, rivers are extracted based on the elevation fea-

tures. Candidate bridges are located by using a morpho-

logical algorithm to thin the extracted skeleton. The final

bridges are detected based on their shortest distance rule on

the achieved skeleton lines. The problem is that the

detection highly relies on the geometric information of

bridges. Due to the mentioned drawbacks, the approaches

described above may not provide the adequate extraction

accuracy in the complex scene.

The target of this paper is to extract paths across water

bodies based on the point coordinates only, i.e. no multi-

echo, intensity, full-waveform or multi-spectral informa-

tion, and provide a method for optimizing accurate bridges

from airborne LiDAR point clouds in the countryside

environment.

Methodology

The proposed bridge extraction is composed of three steps,

including the delimitation of the water and land, the

extraction of candidate bridge points and the optimization

of bridge paths, which will be discussed in detail below.

Shoreline Delimitation

One challenge in the delimitation of the water and land is

the removal of water body points. As mentioned in Man-

dlburger et al. (2015), not all the wavelength laser energy

are absorbed by water. In the case of muddy and shallow

water bodies, we may collect lots of returns. In the other

cases, the return from the water region may be very

minimal.

In the case of less return, we first cluster points based on

the Euclidean distance, and then remove clusters

containing fewer points, e.g. 200 points in our work. As

shown in the first row of Fig. 1, points from the water body

are removed effectively after the Euclidean clustering

process. The following will provide a water point removal

method based on the combination of the plane fitting and

features filtering for the case of much return from water.

As we know, the water body is usually presented as a

large horizontal plane in point clouds. Thus, plane regions

can be regarded as candidate water bodies. The commonly

used plane fitting approach in point cloud processing is the

Random Sample Consensus (RANSAC), which can be

implemented easily through the open source tool point

cloud library (PCL)(Rusu and Cousins 2011). Extracted

plane points may contain false water points. Therefore, we

use the features mentioned in (Smeeckaert et al. 2013),

which are calculated based on the elevation and density

information, to remove false water bodies. In the coun-

tryside environment, the elevation of the water body is

assumed to be low. Hence, if the elevation of a water point

is larger than 2.5 m, we will remark it as a non-water point.

Besides, the density of points from the water body region is

relatively lower than other regions. Thus, if the density at a

water point is larger than 0:3 pt/m2 in the 50m� 50m

region, we will remark it as a non-water point. As shown in

the second row of Fig. 1, points from the water body are

removed effectively based on the combination of the plane

and features information. In the application, since we do

not know the condition of returns from the water body, we

will conduct all the above-mentioned water point removal

steps.

Next, we will propose a method based on the chain-code

approach (Freeman 1961) to delimit the shoreline, i.e. the

contact between the land and water bodies. The shoreline is

regarded as boundaries of lands, which will play a signif-

icant role in the constraint of candidate bridge points and

provide the potential start and ending points of bridges.

Before we propose the shoreline delimitation method,

we use the voxel-based representation technique for orga-

nizing non-water points. The volume of each voxel is

5m� 5m� 5m. Each voxel contains zero or more non-

water points. The goal of the chain-code-based method is

to separately encode each connected voxels in 3D point

clouds. The idea is to select a voxel on the boundary and

then move along the boundary of the region until returns to

the start position. In our work, we prefer to choose the

minimum number of directions in the 3D encoder as shown

in Fig. 2a, including the left, right, up, down, front and

back direction. For example, the 3D contour in Fig. 2b is

encoded as f5; 1; 1; 2; 1; 2; 3; 4; 4; 5; 5; 4; 2; 6g. One can use

more directions to refine the path, but this makes less

improvement in the final bridge path extraction.
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Steps of the proposed chain-code-based method are as

follows. The first step is the assignment of each voxel’s

value. If a voxel contains zero point, we set it as 0. If a

voxel is located right above the water body region, we set it

as 0. In all other cases, we set it as 1. The second step is the

detection of boundary voxels. If two adjacent voxels have

different values in the direction f1; 4; 2; 5g, i.e. the left,

right, front and back direction, we mark them as boundary

voxels. The third step is the extraction of the water body

contour. We choose a start node among the boundary

voxels and explore its neighbors in a fixed order to achieve

the code for a closed contour. The fourth step is to repeat

the above-mentioned chain-code-based method to extract

all contours.

The example of the shoreline delimitation is shown in

Fig. 3. Figure 3a shows the assignment of voxels’ value

after the water point removal. Figure 3b shows the

extracted contours by the proposed chain-code-based

method. It is worth noting that when the exploration of a

contour arrives at the border of the input scene, it will

continue to move along the border to formulate a closed

contour.

Fig. 1 The water point removal. a The input scene with less return from the water. b The removal result of a. c The removed water points from

a. d The input scene with much return from the water. e The removal result of d. f The removed water points from d

Fig. 2 Encoder in the proposed

chain-code-based method.

a Selected six directions. b The

formulation of a 3D contour

using selected voxels (red)

(color figure online)
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Candidate Bridge Points Detection

In our work, bridges are supposed to be across the water

body region. Therefore, candidate bridge points are

expected to fly over the surface of the water body. This

section aims to propose a testing method for detecting

candidate bridge points to reduce the computation com-

plexity in the subsequent optimization.

First, we divide the contour into two disjoint shorelines

as shown in Fig. 4a. Then, we test each non-water point to

decide if it is a candidate bridge point or not. For a testing

point x, denote its nearest point in the left and right

shoreline as Lx and Rx, respectively. If x is not located

above the surface of the water body, the angle \LxxRx will

be acute. If \LxxRx is larger than p=2, x will be regarded as

a candidate bridge point. Figure 4a shows the testing of

four typical points, including two land points A and B, an

island point C and a bridge point D. In the beginning of the

testing, we find out the nearest left and right boundary

points for each testing point, namely the point LA and RA

for A, the point LB and RB for B, the point LC and RC for C,

and the point LD and RD for D. \LAARA and \LBBRB are

less than p=2, which means that A and B are not interest

points. \LCCRC and \LDDRD are larger than p=2, thus,
both C and D belong to the candidate bridge points. An

example of the extracted candidate bridge points is shown

in Fig. 4b.

The proposed testing may fail in the case of thin and

sharply curved rivers. In our experiment, the proposed

strategy succeeds to detect all candidate bridge points when

the width of the river is larger than 80 m.

Bridge Path Optimization

Paths across water bodies are regarded as candidate bridge

paths. Each point from the left shoreline can be regarded as

a potential start point of a bridge path as shown in Fig. 5a.

To extract the optimal bridge path, we formulate the energy

Eq. (1) to calculate the cost of each candidate bridge path.

Fig. 3 Shoreline delimitation.

a The assignment of voxels’

value. d Extracted boundary

contours

Fig. 4 Extraction of candidate

bridge points. a The testing

process. b Candidate bridge

points
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PN ¼
XN

i

DðviÞ þ aSðvi; vi�1Þð Þ ð1Þ

where N is the number of the selected points in the obtained

candidate bridge path.

Assume that the main search direction of candidate

bridge paths is from the left to the right of the input scene.

Since bridges are very organized artifacts with high con-

tinuity and smoothness, we use the point vi�1 to represent

the left nearest neighbor of vi in the bridge path. v1 is the

selected start point for the current bridge path. The data

term D is to calculate the cost of a bridge path containing

all selected voxels. The direction term S aims to constrain

the path direction and elevation. The coefficient a is used

for balancing those two terms in the function. Terms are

defined as follows.

DðviÞ ¼
0; disðvi; vi�1Þ\d0

d; others

(

Sðvi; vi�1Þ ¼ sin\Vi�1;i;Vi�2;i�1 [ þ jzi � zi�1j2
ð2Þ

In the data term calculation, disðvi; vi�1Þ means the Eucli-

dean distance between the point vi and vi�1. If the distance

between two neighbors is smaller than the threshold d0, the

cost in data term is 0, otherwise, the path will be penalized

by a user-defined cost d. In the direction term calculation,

Vi�1;i means the vector pointing from the point vi�1 to vi.

The first term in the direction calculation is achieved by the

sine of Vi�1;i and Vi�2;i�1. zi is the elevation of the point vi
and the second term in the direction calculation aims to

make the bridge elevation consistent. In the calculation of

D and S, if i is less than 2, we define DðviÞ and Sðvi; vi�1Þ as
0. Figure 5a shows the example of three candidate bridge

paths. The optimal path is required to contain as many

candidate bridge points as possible and keep a consistent

direction and elevation. Therefore, the path #2 is the

expected optimal path in Fig. 5a and will be regarded as

the bridge path as shown in Fig. 5b. The following aims to

propose a minimum-cost path model for finding the opti-

mal bridge path.

In the beginning, we model a graph G for building the

solution space as shown in Fig. 6a. Each node in G refers

Fig. 5 Search for bridge paths.

a The example of candidate

bridge paths. b An optimal

bridge path. c Illustration of

multiple bridge paths
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to a point from the input candidate bridge points. The

candidate bridge path is assumed to proceed from the left to

the right of the input scene. Therefore, if the coordinate of

the node niþ1 is (x, y, z), the coordinate of its prior node ni
should be ðx�; y�; z�Þ, where x� 2 ½minðXÞ;maxðXÞ� and

z� 2 ½minðZÞ;maxðZÞ�. y� is smaller than y and

disðy; y�Þ\d0. The graph G contains all possible paths

from the start node to the ending node. Each path can

represent a candidate bridge path.

The next step is to assign the penalty to the connection

between nodes in G. The cost of each connection can be

calculated by Eq. (2), and the sum cost of a path from the

start node to the ending node is equal to PN as mentioned in

Eq. (1). From the start node n1 to the ending node nN , there

will be exponential number of paths and each path #j in

Fig. 6b corresponds a cost P
j
N .

The final step is to find the optimal path from all can-

didate paths to achieve the minimum cost PN . Our opti-

mization is based on the dynamic programming technique.

Assume that we have found the optimal path from the start

node to each node. When adding a new node nNþ1 to G, the

optimal path from the start node to nNþ1 should contain the

optimal path from the start node to its prior node nN . Thus,

to obtain the entire optimal path from the start node to

nNþ1, we only need to find the minimum-cost connection

from nN to nNþ1. The corresponding PNþ1 is calculated as

PNþ1 ¼ min
q

i¼1
PNi þ Dðvnþ1Þ þ aSðvnþ1; vnÞð Þ ð3Þ

where q is the number of nNþ1’s prior nodes. Figure 6a

shows the example of niþ1’s prior nodes, including ni1 ,

ni2 ; . . ., and niq . Since PNi is known, the computation of

PNþ1 incurs a quite low complexity. Nodes in the mini-

mum-cost path will be regarded as the selected points for

obtaining the candidate bridge path.

Each path #j has a cost, which can be calculated by

Eq. (1). Since an input scene may contain more than one

bridge path, we choose each boundary point as a start node

and conduct the proposed path search. Assume that a scene

has Q candidate bridge paths and Pi
N is the cost of each

Fig. 6 Minimum-cost path

model. a Search process.

b Paths from the start node to

the ending node

Table 1 The description of test

datasets
# Points (�103) Size (m) Density (pts/m2) Survey date (m/year) Location (US)

(a) 2021 961 9 1453 1.45 11/2008 Vermont

(b) 657 235 9 333 8.40 10/2007 Maine

(c) 19 575 9 296 0.11 03/2011 Indianna

(d) 181 446 9 448 0.91 03/2011 Indianna

(e) 116 285 9 238 1.72 03/2011 Indianna

(f) 217 280 9 378 2.06 03/2011 Indianna

(g) 2516 1620 9 1624 0.96 03/2011 Indianna
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path, i.e. i ¼ 1; 2; . . .;Q. If the cost of a candidate path is

less than the threshold p0, i.e. 10�minðPi
NÞ in our work,

this path will be stored as a bridge path. The illustration of

searching multiple bridge paths is shown in Fig. 5c. Based

on the above analysis, P2
N and P3

N are regarded as bridge

paths.

Experiment and Evaluation

Because the number of bridges in a scene is usually low,

bridges were manually selected from several scenes for the

experiments described in this paper. To test the perfor-

mance of our extraction, we applied it to different point

cloud scenes. Table 1 shows the description of the exper-

imental scenes, including the number of points, the size of

the scene, the density of points, the survey date and loca-

tion. The testing scenes are downloaded from OpenTo-

pography (http://www.opentopography.org/). (a) is

provided by US Geological Survey. (b) is provided by

National Center for Airborne Laser Mapping. (c)–(g) are

provided by IndianaMap Framework Data.

Our results of the bridge extraction are shown in Fig. 7.

In Fig. 7a, there is a region extending to the water body,

which is easy to be wrongly extracted as bridges by

methods based on the cross section of the water region. In

Fig. 7b, there are two bridges over a water body. The

challenge is that points below bridges are very sparse but

other water regions contain lots of points. In Fig. 7c, d, we

show two common simple bridges in the countryside

environment, including a railway bridge and cement

bridge. The challenges in Fig. 7e is the involvement of an

island below the bridge. The challenges in Fig. 7f include

that four bridges are in different elevation and two of them

are merged. In Fig. 7g, we show a large scene containing

different types of bridges.

In the experiments, the average cost time across sites

(a)–(f) is 57.03 s and the cost time in the site (g) is

283.82 s. Experiments were done on a Windows 10 Home

64-bit, Intel Core i5-7200U 2.5 GHz processor with 16 GB

of RAM and computations were carried on Matlab R2018a.

We succeed to accurately detect all bridges in Fig. 7, which

indicates that the proposed method is very promising in the

bridge extraction from ALS point clouds.

The test is performed on data with various densities. The

point density in (c), (d) and (g) is less than 1:0pt/m2, the

density in (a), (e) and (f) is around 2:0pt/m2, and the

density in (b) is more than 8:0pt/m2. In the case of the low

density data, there will be more false water bodies, because

the water point removal relies on the density information.

In this case, we have to decrease the density threshold in

the false water point removal process. The candidate bridge

point extraction only depends on the shoreline delimitation,

which is robust to the density. As we mentioned before, a

bridge is very organized artifacts with high continuity and

smoothness in ALS point clouds. The bridge optimization

is also insensitive to the density, when users set appropriate

parameters in the path cost calculation.

The existing approaches to the bridge extraction did not

provide detail detection accuracy. For the comparison, we

evaluate extraction results based on the ratio of the cor-

rectly detect bridges. Evaluation results are shown in

Table 2. In the comparison, all input data are ALS point

clouds. The third column shows the number of experi-

mental scenes in each method. The fourth column shows

the number of bridges in each method. The fifth column

shows the number of bridges in each scene and the last

column shows the correctly detected bridge ratio.

All of the methods in Table 2 achieve 100% bridge

extraction ratio. However, our test scene is more complex

than others, which shows our robustness is better than

others. We test the proposed algorithm on a large coun-

tryside scene and our B./S is much larger than other

methods. In the method of Sithole and Vosselman (2006),

bridges tend to be partially or completely removed in their

filtering process when bridges are in different elevation.

Figure 7f shows that our algorithm works well in dealing

with the elevation difference. In the method of Duan et al.

(2014), the extraction is invalid if there is no water point

below the bridge. Figure 7e, f show that our algorithm does

not rely on the completeness of water points.

The following is the analysis of parameters and the

guideline for choosing parameters. As shown in Table 3,

there are mainly 5 parameters in the bridge path opti-

mization. k is to set the number of neighbor points in the k-

nearest neighbors approach. It is used to find the prior

nodes in the optimization. A larger k shows advantage in

the case of incomplete bridges but incurs much more

computation. a is the coefficient in the energy Eq. (1). It is

used for balancing the data and smoothness term. A larger

a is suitable for the classic bridges, i.e. bridges with very

parallel edges, but the result may contain less candidate

bridge points in the case of complex bridges. d0 is the

threshold to constrain the maximum distance between two

neighbor nodes. It is used in the data term calculation.

Table 2 Comparison of the accuracy of different methods

Method Data Total

scenes

Total

briges

B./

S.

Acc.

(%)

Sithole and Vosselman

(2006)

ALS 6 8 1.33 100

Duan et al. (2014) ALS 3 4 1.33 100

Proposed ALS 7 19 2.71 100
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Similar to k, a larger d0 brings much more prior nodes

which may cause more computation in the optimization. d

is the user-defined penalty. It is used in penalizing the

selection of a non-neighbor node in the path. A larger d

will increase the weight of data term and cause that the

resulting path only connect as much candidate bridge

points as possible in the optimization. p0 is an adaptive

threshold value. It is used in choosing multiple optimal

bridge paths. A larger p0 may reduce the miss extraction

ratio but incur more false bridges. All suggested values in

our experiments are shown in Table 3.

Conclusions

In this paper, we propose a three-step method for the bridge

extraction from airborne LiDAR point clouds, including (1)

the water point removal, and the land/water interface

delimitation, (2) candidate bridge points extraction and (3)

the bridge path optimization. Bridges are represented by

paths across the water body and the cost of each path is

measured by the proposed energy function. The optimiza-

tion of the bridge path is achieved by the proposed mini-

mum-cost path model using the dynamic programming

technique. Our extraction requires airborne LiDAR point

clouds only and the optimization is proceed based on the

coordinate information without any human–computer

interaction. Experiments show that the presented algorithm

succeeds to extract all bridges in different scenes, which is

competitive to other existing methods. Future work will

show our performance in different environments, e.g. the

urban and mountain areas, and focus on more complicated

arch bridges.
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