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ABSTRACT
This letter aims to propose an automatic method for the segmen-
tation of street trees from LiDAR point clouds. The first step is to
extract tree points to reduce the scale of data to be processed. The
second step is to formulate supervoxels for grouping homoge-
neous points. The third step is to optimize the segmentation of
individual trees based on the minimum distance rule. Each super-
voxel will be assigned the same tree index as its spatially closest
treetop supervoxel, therefore, points from the homogeneous
region sharing the same tree index. Experiments show that we
achieve the completeness of 78.5%, correctness of 94.5% and
F-score of 0.85 in the airborne LiDAR data. For mobile LiDAR
data our accuracy is 100, 93.8% and 0.96 in terms of the recall,
precision and F-score, respectively.
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1. Introduction

The individual tree segmentation aims to derive the structural attributes of the tree,
which plays an important role in the biomass productivity estimation (Yun et al. 2016)
and the forest management (Xia et al. 2015). Nowadays, the laser scanning technique
succeeds to provide an accurate 3D information of high-density point clouds which
allows for a better street tree segmentation. In the following, typical methods proposed
for the tree segmentation from LiDAR point clouds will be reviewed and analyzed.

Li et al. (2012) proposed a top-to-bottom region growing approach to segment trees
from LiDAR point clouds. First, they obtained the height from ground to each point by
subtracting the ground points. Then, they segmented trees by starting from a treetop
point and grouped its nearby points by setting a distance threshold. The problem is that
points at the lower elevation are difficult to be classified using a fixed threshold in
complex environments. Véga et al. (2014) proposed a method called PTrees to the
segmentation from LiDAR point clouds. Similar to Li et al. (2012), they used the elevation
value to process points from the highest to the lowest point. Their strategy is to search
treetop points within a neighborhood window first and then perform a region-growing
strategy to delineate tree crowns. Treetop points are generated at different segmenta-
tion scales, therefore, their algorithm can select an optimal treetop points in the
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segment generation. Mongus and Žalik (2015) proposed a clustering-based method for
delineating individual trees from LiDAR data. First, they detected treetop points by
defining a canopy height model using the shape information. Then, they achieved the
delineation of additional tree crowns from different layers by estimating points’ distribu-
tions. Their search for treetop points does not depend on the shape or size of tree
crowns. Hamraz, Contreras, and Zhang (2016) proposed a non-parametric method for
segmenting individual trees based on the crown shape and height of the vegetation.
They segmented trees by starting from the tallest tree within a given area to the smallest
until all trees have been segmented. The advantage is that they do not require priori
assumptions of crown shape and size.

The target of this letter is to generate supervoxels to tree points and provide an
automatic method for segmenting the individual tree from LiDAR point clouds.

2. Methodology

2.1. Data preprocessing

The outlier removal is based on the calculation of the mean μ and standard
deviation σ of k-nearest neighbors. In our work, points between μ� t1σ and μþ
t1σ are regarded as valid points. To improve the efficiency of data processing,
ground points are filtered before the segmentation. In the road environment,
ground points are more dense than off-ground points. Thus, peaks in the elevation
histogram can be used to find the threshold for the filtering task. Details of
selecting the peak for the ground point removal are shown in the work of Xu
et al. (2018). The final task in the preprocessing step is the tree point extraction,
which is implemented by classifying off-ground point into tree points and non-tree
points. We split off-ground points into multilevel hierarchical cluster sets first, and
then the shape features of the multilevel point clusters are extracted based on the
work of of Zhang et al. (2016). In the classifier selection, we choose the support
vector machine (SVM) (Cortes and Vapnik 1995; Zhu et al. 2016) to distinguish trees
(positive) and others (negative).

2.2. Supervoxel generation

In our work, the supervoxel is defined as a polyhedral region consisting of homogeneous
points. Each supervoxel has one center point and there are no overlapping points
between different supervoxels. We define three matrices in the supervoxel generation.
The first one is Sn�n called the neighbor distance matrix, where n is the number of
points. The element Sðp; qÞ, which is indexed at ðp; qÞ in the matrix S, measures the
similarity between the point p and q by

Sðp; qÞ ¼ e�dðp;qÞ; (1)

where dðp; qÞ means the Euclidean distances between the point p and q. If the point p
and q are spatially close, the similarity Sðp; qÞ tends to be 1, otherwise, it approaches 0.

The second one is Mn�n named the attraction matrix and its element Mðp; rÞ is
calculated by
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Mðp; rÞ ¼ Sðp; rÞ �max
r0�r

Nðp; r0Þ þ Sðp; r0Þð Þ: (2)

We assume that Sðp; rÞ not only measures the similarity between p and r, but also shows
the potential of choosing the point r as the supervoxel center of p. Besides, we define
the third matrix Nn�n as the assignment matrix and its element Nðp; r0Þ shows the
potential of assigning the point p to the supervoxel center r0. Then, the second term
in Equation (2) is to calculate the potential of choosing the point r0 as the center of a
supervoxel containing the point p. Therefore, Mðp; rÞ shows the superiority of using the
point r as the supervoxel center of p over the point r0, i.e. the attraction of r as the center
of a supervoxel containing p. The element Nðp; rÞ in the defined assignment matrix is
calculated by

Nðp; rÞ ¼
X

p0�p

Mðp0; rÞ: (3)

In our work, if the potential of choosing r as the supervoxel center for all other points p0

is high, the potential of selecting r as the supervoxel center of p will be also high.
At the beginning, we regard each point as a candidate supervoxel center. Our goal is

to assign non-center points to the optimized supervoxel centers to generate complete
supervoxels. In the generation, supervoxel centers are updated iteratively based on the
attraction and assignment matrix, which is similar to the update of centers in k-means
clustering. The following Algorithm 1 shows the supervoxel generation from point
clouds.

2.3. Tree segmentation

In the search of the treetop location, we first use a non-overlapping sliding window (size:
s m � s m) to extract the local highest supervoxel as a candidate treetop supervoxel.
The elevation of a supervoxel is decided by its center point. Then, we use a larger non-
overlapping sliding window (size: 2s m � 2s m) to remove treetop supervoxels that are
lower than μs þ t2δsð Þ, where μs and δs are the mean and standard deviation elevation of
candidate supervoxels in the current window, respectively. After this, if the distance
between two treetop supervoxels’ centers is smaller than s m, we will remove the lower
one. The illustration of our filtering method is shown in Figure 1. A non-treetop super-
voxel will be assigned the same tree index as its closest treetop supervoxel. Figure 2(a)
shows an input scene consisting of several individual trees. Our generated supervoxels
are visualized by different colors in point clouds as shown in Figure 2(b) and the red dots

Algorithm 1. Supervoxel formulation.
1: Initialize the neighbor distance matrix S by Equation (1);
2: Initialize the assignment matrix N as zero;
3: Update the attraction matrix M by Equation (2);
4: Update the assignment matrix N by Equation (3);
5: Repeat 3–4 until the matrix T = (M + N) converges;
6: Find the point r� to achieve the maximum element in the i-th row of T, i.e. Tði; r�Þ> Tði; r0Þ; r0�r� ;
7: Mark r� as a supervoxel center;
8: Repeat 6–7 until each row of T has been decided;
9: Assign all other points to supervoxel centers based on the Euclidean distance.
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show the detected treetop supervoxels achieved by filtering the elevation. Figure 2(c) is
the result of the individual tree segmentation.

Figure 3 uses a simulated example to show the outcome of each step in the
proposed method. Figure 3(a) shows the input LiDAR point clouds. Figure 3(b,c) are
the extracted ground points and off-ground points, respectively. Figure 3(d) presents
the classified tree points (green) and other points (black). Figure 3(e) shows the
generated supervoxels for tree points. Figure 3(f) demonstrates the final results of
the tree segmentation.

3. Experiments and evaluation

This section tests the proposed algorithm on two LiDAR point cloud sets. The first set is
from the 2015 Dublin LiDAR project (doi:10.17609/N8MQ0N) collected by the airborne
LiDAR scanning (ALS) system. Our segmented individual trees are illustrated by different
colors as shown in Figure 4(a,b).

Figure 1. The filtering of treetop supervoxels. (a) Formulated supervoxels (black dot). (b) Found
candidate treetop supervoxels (red dot) by filtering with a sliding window (size: s m � s m). (c)
Updated candidate treetop supervoxels (red dot) by filtering with a sliding window (size: 2s m � 2s
m). (d) Refined treetop supervoxels (red dot) by adding the constraint of Euclidean distances
between centers.

Figure 2. The assignment of supervoxels in the tree segmentation. (a) Input point clouds. (b)
Detected treetop supervoxels (red dot). (c) Achieved tree segmentation results based on the
found treetops.
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The second set is from a dense urban environment in Paris (Vallet et al. 2015)
collected by the mobile LiDAR scanning (MLS) system. Performance of the proposed
tree segmentation is shown in Figure 5(a–c) are results of the tree segmentation in the
side view and top view, respectively. Our errors are caused by the tree point

Figure 3. The outcome of each step in the proposed tree segmentation. (a) Input point clouds. (b)
Extracted ground points. (c) Extracted off-ground points. (d) Classified tree points (green) and others
(black). (e) Generated supervoxels for tree points. (f) Obtained tree segmentation results.

Figure 4. Test on the ALS data collected in Dublin, Ireland (location: 53�20ʹ16”N, 6�15ʹ32”W). (a)
Achieved tree segmentation results from the St Stephen’s Green park (area: 371 m � 292 m,
number of points: 1,724,926). (b) Achieved tree segmentation results from the street scene (area:
278 m � 219 m, number of points: 244,831).
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classification. As shown in Figure 5(d), pole-like objects are classified as trees and are
wrongly detected as treetops.

In the evaluation, the reference of individual trees is manually segmented from input
points. If a tree is correctly segmented, it is called true positive; if a tree is not segmented
but assigned to a nearby tree, it is called false negative; if a tree does not exist but is
wrongly segmented from the point cloud by us, it is called false positive. The evaluation
is achieved by analyzing the recall R, precision P and F-score F as

R ¼ TP
TPþ FN

; P ¼ TP
TPþ FP

; F ¼ 2� R� P
Rþ P

; (4)

where TP, FN and FP are the number of segments in true positive, false negative and
false positive, respectively. The recall measures the probability of trees that can be
extracted by our method, and the precision measures the probability of our segments
that are trees in the reference. The comparison of the proposed algorithm and others is
shown in Table 1.

Experiments show that the proposed algorithm achieves very competitive results in
the individual tree segmentation. We do not have complex neighbor information
calculation, e.g. the voxelization in (Wu et al. 2013; Li et al. 2016) or the octree
construction in (Zhong et al. 2017). Our supervoxel-based assignment is more efficient
and robust than the point-based assignment strategy in (Tao et al. 2015; Li et al. 2012;
Véga et al. 2014). Points from the same supervoxel are homogeneous and will be
assigned the same index simultaneously. Moreover, we do not require providing the
height model or the shape information in the segmentation as in (Mongus and Žalik

Figure 5. Test on the MLS data collected in Paris, France (location: 48°51ʹ01.3”N, 2°19ʹ57.9”E, area:
150 m × 134 m, number of points: 19,930,860). (a) Achieved tree segmentation results from the road
scene. (b) The side view of the region A in (a). (c) The top view of the region B in (a). (d) The close-
view of the region C in (a).

520 S. XU ET AL.



2015; Hamraz, Contreras, and Zhang 2016). In the ALS data test, we achieve the highest
precision in the experimental scene. False negative errors, e.g. the short trees and
spatially close trees, can be improved by using adaptive sliding windows for different
scales of trees. In the MLS data test, we achieve the highest recall in the experimental
scene. False positive errors, e.g. streetlights and traffic signs, caused by the tree point
classification can be removed based on the point distribution.

4. Discussion

To evaluate the applicability and robustness of the proposed pipeline, we test it on the
ALS and MLS data. It took us 477.74 seconds to extract 186 out of 250 trees in Figure 4
(a), 79.93 seconds to extract 58 out of 70 trees in Figure 4(b) and 212.51 seconds to
extract 90 out of 90 trees in Figure 5(a). Experiments were done on a Windows 10 Home
64-bit, Intel Core i5-7200U 2.5GHz processor with 32 GB of RAM and computations were
carried on Matlab R2017a.

Table 2 organizes all required parameters in the proposed method. In order to
improve the efficiency of the segmentation, we set the number of neighbors k and
the truncation thresholds t1 and t2 as constants. The Sðp; pÞ is set as the median value of
S to adapt different scenes. We assume that two treetops in the road environment are
over s ¼ 2:5 m. Parameters can be varied in different scenes, therefore, one may need to
tune them by experiments for achieving the optimal results.

The proposed supervoxel approach is a general method, which only requires setting
the distance value Sðp; pÞ. The size of the generated supervoxel depends on Sðp; pÞ,
which can be decreased by increasing the value of Sðp; pÞ. Supervoxels have the similar
size after setting an appropriate Sðp; pÞ, e.g. the median value of S in our work. The
efficiency of the supervoxel generation relies on the update of M and N, which incurs

Table 1. Comparison of the accuracy of different methods.
Method Scanner R (%) P (%) F

Li et al. (2012) ALS 86.0 94.0 0.89
Véga et al. (2014) ALS (average) 82.7 89.7 0.86
Mongus and Žalik (2015) ALS 56.0 77.0 0.64
Hamraz, Contreras, and Zhang (2016) ALS 72.0 86.0 0.78
Proposed ALS (Park scene) 74.0 92.0 0.82

ALS (Street scene) 83.0 97.0 0.89
ALS (average) 78.5 94.5 0.85

Wu et al. (2013) MLS (average) 99.3 100 0.99
Tao et al. (2015) MLS (average) 98.0 100 0.98
Li et al. (2016) MLS (average) 98.0 96.0 0.96
Zhong et al. (2017) MLS 94.0 93.7 0.93
Proposed MLS 100 93.8 0.96

Table 2. Parameter setting used in the different stages of the proposed method.
Stage Parameter Value Unit

Data preprocessing k 40 points
t1 1.5 N/A

Supervoxel formulation Sðp; pÞ median value of S N/A
Tree segmentation s 2.5 meters

t2 1.0 N/A
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very low computation complexity, i.e. Oð1Þ and Oðlog2mÞ, respectively, where m is the
number of elements in M. Points from the same supervoxel are homogeneous, which
have a high similarity measured by S. The drawback in the supervoxel generation is the
high memory request for the defined matrices S, M and N, which can be improved by
sparse storage techniques. Another disadvantage lies in the search of treetop super-
voxels. The filtering process uses a fixed window results in the missing of treetops as
shown in Figure 6. Therefore, further research is necessary to develop an adaptive
sliding window algorithm for the search of treetop supervoxels.

5. Conclusions

In this letter, we propose a general pipeline for the individual tree segmentation from
urban environments. The pipeline consists of the preprocessing step to extract tree
points, the supervoxel generation step to group homogeneous points and the segmen-
tation step to delineate trees. In the supervoxel generation, we first optimize supervoxel
centers, and then assign other points to them for obtaining complete supervoxels. We
succeed to overcome two main drawbacks in the commonly used tree point assignment
strategy, including the low efficiency caused by assigning the index to each point and
the assignment of different tree indexes for homogeneous points. Our algorithm
requires inputting point clouds only and is proceeded automatically. Experiments
show that the proposed algorithm is competitive with other existing methods and is a
promising method for the individual tree segmentation from LiDAR point clouds.
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