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ABSTRACT
Nowadays, mobile laser scanning (MLS) system succeeds to collect
plentiful side information of roadside trees. This letter aims to
propose a method for the individual stem detection in residential
environments using mobile LiDAR point clouds. The first step is to
use the proposed point removal method for filtering ground points
based on the elevation histogram. The second step is to localize
trees by using a circle fitting method on the projection points of
trunks. The third step is to use the voxel-based representation
approach to organize points and calculate the voxel value for the
following optimization. The last step is to minimize the formulated
stem energy function by the dynamic programming technique. The
main contribution of our work is that the cost of finding a stem is
calculated by a penalty function and minimized by a dynamic
programming model. Test on residential environments shows that
our method achieves the completeness of 94.2% and correctness of
95.7%, which are competitive results in the stem detection.
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1. Introduction

Individual tree detection from point clouds finds various applications in forestry, such as the
canopy segmentation (Lu et al. 2014), species classification (Matsuki, Yokoya, and Iwasaki
2015) and vegetation analysis (Yun et al. 2016). Airborne laser scanning has been used in the
information collection for the forest research several years ago, however, airborne LiDAR
point clouds are usually in a low density and difficult to contain the side information of
roadside trees. Recently, mobile laser scanning (MLS) data, which are collected with a high
point density in a relatively lower cost, are becoming available. MLS succeeds to provide
abundant tree side information and brings more chances for the forestry. In the following,
several typical methods proposed for the stem detection with LiDAR data will be reviewed.

Hetti Arachchige (2013) used the principal direction and geometric shapes as geometric
descriptors in the stem detection. They did not need any prior knowledge before the
detection and worked well in various kinds of tree structures. However, their stem growing
process was easy to be affected by data gaps along the stem. Lehtomäki et al. (2010)
extracted trunks frommobile LiDAR data by proposing a detection framework, including the
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scan line segmentation, groups clustering, clusters merging and candidate clusters classifi-
cation. However, when a trunk was inside branches, they were difficult to extract the stem.
Liang et al. (2014) proposed a model-based method to estimate the location of the stem by
using a series of 3D cylinders. They achieved a high performance in the test forest where
most stems were oriented vertically. Xia et al. (2015) detected stems by proposing a classifier
usingmulti-scale geometric features. In their work, there was no requirement of the circle or
cylinder fitting process, however, their results highly depended on the accuracy of the scene
classification. Guan et al. (2015) proposed a voxel-based segmentation method to detect
trees from mobile LiDAR point clouds. They succeeded to segment overlapping trees into
individual objects. In the method of Zhong et al. (2017), they provided an approach based
on the histogram of octree nodes, and used the kurtosis threshold and ground connectivity
as constraints to distinguish tree stems in mobile LiDAR point clouds. However, neither
Guan et al. (2015) nor Zhong et al. (2017) showed results of the stem detection in their work.
The motivation of this letter is to obtain optimal stems frommobile LiDAR point clouds and
provide a high accuracy of the stem detection in residential environments.

1.1. Ground point removal

Although existing point filtering methods are proved to work well in airborne LiDAR point
clouds, they may achieve a poor performance in our MLS data. For example, Progressive
triangular irregular network densification (Axelsson 2000), which is a state-of-the-art
ground point removal method, appears problems. Points which are close to the ground
can be misclassified as ground points. This is because that a user-defined threshold for the
judgment of non-ground points is difficult to be adaptive for different environments.

In this section, we propose a new point removal method for filtering ground points
adaptively based on the elevation information. Since ground points are much denser
than the off-ground points in MLS data, there exists a peak in the elevation histogram to
indicate the region of ground points. The expected histogram of mobile LiDAR point
clouds is shown in Figure 1, including a peak point (xp, yp) and a terminal point (xt, yt). The
elevation threshold for the judgment of the off-ground and ground is supposed to be
between the peak point and the terminal point in the histogram. In our method, we use
a moving point (xm, ym) for searching the optimal elevation in ground filtering. Denote
the angle between the vector MP = (xp − xm, yp − ym) and MT = (xt − xm, yt − ym) as φ,

Figure 1. Illustration of the ground point removal.
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which is used to illustrate the change rate of points’ elevation. The moving point, which
achieves the smallest φ, will be chosen to indicate the optimal elevation for the ground
removal. As shown in Figure 1, either a lower or a higher elevation will cause a large
angle φm or φn compared with the angle φopt.

Figure 2 shows the example of our proposed ground removal in MLS data. In this case, the
elevation histogram of the input scene is shown in Figure 3(a). There is more than one peak in
the histogram. The goal is to find the smallest angle between the vectorMPi andMT, where
i = 1 or 2, as shown in Figure 3(b). In our removal, the valid smallest angle is required to be
greater than π/2. The optimal threshold is decided by themoving point which is 11.20 meters
in this example. Ourmethod does not require any user-defined threshold and can be adaptive
tomost residential environments. Problemsmay appear inmountains anddata are required to
be split into small pieces to keep the elevation of the ground consistently.

1.2. Tree localization

In this section, we will localize trees by using a circle fitting method on the projection of
trunks. The selected regions for projecting are points at a height of 120–160 cm above
the ground. Below are details of our localization.

First, extract those points that at a height of 120–160 cm above the detected ground as
shown in Figure 4(a). Second, project the above extractedpoints onto a 2Dplane as shown in
Figure 4(b). Third, use a circle fittingmethod to localize candidate trees. In the fitting process,

Figure 2. Performance of the removal method.

Figure 3. Illustration of obtaining the optimal threshold value. (a) Elevation histogram of the input
scene. (b) The search for the optimal threshold value.
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we choose the random sample consensus (RANSAC) (Schnabel, Wahl, and Klein 2007) to
estimate parameters of circles from our point clouds. RANSAC has a high robustness for
incomplete data containing outliers and works well in MLS data. Circles in Figure 4(b) show
localization results of trees from the projection plane. The centre point of each circle will be
chosen as a seed and we will conduct our optimization for all valid seeds to find stems.

1.3. Voxel based organization

Mobile LiDAR point clouds are unorganized, massive and uneven. In this section, we
propose a voxel-based representation method to organize points. Input points are split
into adjacent 1 cm × 1 cm × 1 cm cubes which are called voxels. The key is how to
assign the voxel value for the optimization of the stem growing.

In our work, the stem is supposed to have a consistent direction in growing. Therefore,
the voxel value is formulated to show the growing direction of the current point. In order to
obtain the growing direction of points, we define the optimal projection of each point. The
optimal plane is calculated by projecting neighbouring points to planes with different
normal vectors. The projection process is achieved by using the spherical coordinate system.
The normal vector of each plane is calculated by (sinϕ × cosθ, sinϕ × sinθ, cosϕ). θ and ϕ are
angles required in the spherical polar coordinates and they range from 0 to 2π and 0 to π,
respectively. The projection plane with the largest density will be chosen as the optimal
plane of the current point. The points’ density is defined by the mean Euclidean distance
between the current point and its neighbouring points. In our work, we split the angle θ and
ϕ into nine bins. The interval of the angle θ and ϕ is 2π/9 and π/9, respectively. Thus, there
are 81 candidate projection planes. The value of a voxel depends on the ϕ of the projection
plane. For a projection plane, if φ 2 3π=9; 4π=9½ Þ, the value of the voxel is 3 as shown in
Figure 5. The value of the voxel is calculated as centrosymmetric.

1.4. The stem growing

In the stem growing, we define the ROI (region of interest) as a cylinder as shown in
Figure 6. The diameter of the cylinder is 2 meters and the length is the height of the
input tree. The stem of a tree will be built by voxels in ROI with the minimum cost from

Figure 4. Performance of the tree localization. (a) Projection regions. (b) Localization of candidate trunks.
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the seed point. Following shows the formulation of an energy function for calculating
the cost of a stem and the minimization of the proposed object function.

1.4.1. Formulation of the stem cost
Our energy function uses a data term and a smoothness term to represent the cost of
different stems and can be defined as:

EN ¼
XN
i

Diðx; y; zÞ þ Sði; jÞð Þ (1)

where N is the number of voxels in the stem and (x, y, z) is the coordinate of the current
voxel i. Voxel j is the prior voxel of i in the stem. The data term D refers to the cost of a
stem containing all selected voxels and the smoothness term S is the cost of connecting
the voxel i with j in the stem. The above-mentioned two terms are calculated as

Figure 5. Illustration of the spherical projection method.

Figure 6. Illustration of the ROI (region of interest) and the stem growing.
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Diðx; y; zÞ ¼
0; i 2 C

β; i‚C

�

Sði; jÞ ¼ dði; jÞ;
VðiÞ � VðjÞj j � dði; jÞ;

VðiÞ ¼ VðjÞ
VðiÞ�VðjÞ

� (2)

In the data term, C is the set of voxels that containingpoints. If a stem contains an empty voxel,
i.e., a voxel has no points inside, there will be a preset penalty β. In the smoothness term, V(i)
andV(j) are the valueof the voxel i and j, respectively. Functiond(i,j) is to calculate theEuclidean
distances between voxels i and j. If voxels i and j are in different growing directions, the stem
containing both i and jwill be assigned a large penalty. Voxels in the ROI formulate candidate
stems and our task is to find the one whose cost achieves the minimum energy.

1.4.2. Optimization of the stem growing
To achieve the minimization of EN, we model a graph using voxels as our nodes. The left
of Figure 7 shows the input point clouds and the middle of Figure 7 demonstrates the
formulated set C using our voxel-based representation. The right of Figure 7 displays the
modeled graph filled with empty voxels and the set C voxels. By adding a source node A
and a sink node B, each stem is regarded as a path from A to B. Connections between
adjacent voxels are weighted by the sum of the data term and smoothness term. The
capacity of a path from A to B is the cost of the stem. Our goal is to find the path of the
minimum cost. The number of candidate paths is large. It is impossible to find the
optimal path by enumerating the cost of all paths. The following shows how to solve the
optimal path by the dynamic programming (DP) method efficiently.

DP is a well-known optimization method for solving the minimum cost. The idea is to
break the complex problem down into a collection of simpler sub-problems. When a
path adds a new node q, the optimal path from the starting node A to q must contain
the solution from the starting node A to q’s prior node p. The sub-problem of our
optimization is to find an optimal path from p to the newly added node q. For each node
p, we store the optimal path from A to p and the cost Ep of the path. When adding a new
node q to the path, the required optimization is the minimization of Equation (3).

Eq ¼ min
p2Q

ðEp þ Dqðx; y; zÞ þ Sðq; pÞÞ (3)

Figure 7. Illustration of the graph to be optimized, including input tree points, voxels in the set C
and graph for the optimization.
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where Q is the set of adjacent nodes of q. When q arrives at the sink node B, we finish
the calculation of all paths’ cost in the current ROI. The path of the least cost will be
chosen as the optimal stem for this ROI. It is worthy to mention that even the stem is
incomplete, our method can figure out the optimal stem by calculating the penalty of
containing empty voxels in the path as shown in the right of Figure 7.

2. Experiments and discussion

2.1. Dataset and parameters

The test data is an area containing 190,607,045 points acquired by the Riegl VMX system.
The test area is located at a residential area (48°26ʹ05N, 123°20ʹ50W) of Victoria, BC,
Canada. All required parameters in our stem detection are shown in Table 1. In the value
of θ and ϕ, n is an integer and ranges from 0 to 8.

2.2. Evaluation

In our work, the evaluation of the stem detection is on both the individual stem level
and point level. Results of the stem detection based on the individual stem level are
shown in Figure 8(a). A close view of our detected stems is shown in Figure 8(b). There
are 129 visible stems in the input points and 120 stems are detected by the proposed
method which achieves an accuracy of 93.02%.

There are three challenging cases in our stem detection as shown in Figure 9. (1) Pole-like
objects (e.g., the streetlight and pole) which are easy to be wrongly detected as trees in the
localization. The solution is to analyse the distribution of points in the ROI using the Kurtosis
method (Zhong et al. 2017) to remove false trunks before the stem detection. (2) Trees
without visible stem points (e.g., the pine tree) or there are artefacts (e.g., the hedge or
fence) or understory shrubs around the trees. In order to obtain all seeds for growing trees in
this case, we set a large error tolerance in RANSAC. This causes the appearance of over-
sampling circles for indicating starting points. Although there are wrongly extracted circles,
we can remove them in the analysis of the point distribution in the ROI. (3) Trees with a small
diameter (e.g., the thin tree) at the height of 120–160 cm above the ground which are easy
to be missed. Our suggestion is to set a specific small diameter (5 cm) threshold in the
RANSAC for these trees.

For the evaluation on the point level, results of the detection include the true positive
(TP), false negative (FN) and false positive (FP) (Hetti Arachchige 2013). The required

Table 1. Parameters in the proposed stem detection.
Parameters

Process Description Value

Tree localization Diameter of the trunk >20 cm
Height of the tree >2 m
Elevation of points to be projected 120–160 cm

Voxel based organization Generated voxel size 1 cm × 1 cm × 1 cm
Diameter of the cylinder 2 m
The value of θ n × 2π/9 rad
The value of ϕ n × π/9 rad

Stem growing Coefficient β in data term 1
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reference in the evaluation is obtained manually. The evaluation on the point level
includes the completeness and correctness as calculated in Equation (4).

Completeness ¼ TP
TPþ FN

;Correctness ¼ TP
TPþ FP

(4)

The comparison of our method and other methods is shown in Table 2.

Figure 8. Demonstrate of detected stems. (a) Input point clouds and detected stems. (b) Details of
the detected stems.

Figure 9. Challenging cases. (a) Streetlight. (b) Pole. (c) Pine. (d) Shrub. (e) Thin tree.
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Results from Table 2 indicate that MLS data are very promising information for the
analysis of residential tree inventories. Our method obtains a high accuracy in both
completeness and correctness which is proved to work well in the stem detection. It took
us 2.5 minutes to detect 120/129 stems from the input 190,607,045MLS points. Experiments
were done on a Windows 10 Home 64-bit, Intel Core i5-7200U 2.5 GHz processor with 16 GB
of RAM and computations were carried on Matlab R2017a. Moreover, our method also
achieves a high accuracy in the individual tree segmentation when using the shortest-path
algorithm (CSP) (West, Brown, and Enquist 1999) as shown in Figure 10.

3. Conclusions

This letter proposes a method for the stem detection from residential environments using
MLS data. Ground points are filtered by our point removal method based on the elevation
histogram adaptively. Seeds of trees for the stem growing are chosen by the circle fitting
from the 2D projection of points. MLS points are organized by adjacent voxels and then
modeled in a graph for the stem optimization. In the optimization, the cost of building a
stem is calculated by a formulated energy function and minimized by the dynamic
programming. In the evaluation, our algorithm achieves an accuracy of 93.02% on the
stem level, and a completeness of 94.2% and correctness of 95.7% on the point level. Our
work shows that stems in residential environments can be localized and detected well

Table 2. Comparisons of the completeness and correctness of different methods.
Method Completeness (%) Correctness (%)

Hetti Arachchige (2013) 92.8 97.5
Lehtomäki et al. (2010) 83.5 86.5
Xia et al. (2015) 88.0 93.0
Proposed 94.2 95.7

Figure 10. Illustration of the individual tree segmentation.
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based on the proposed optimization method with MLS data. The stem detection in
mountains where seeds are difficult to be set is required to be further studied.
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