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Road Curb Extraction From Mobile
LiDAR Point Clouds
Sheng Xu, Ruisheng Wang, and Han Zheng

Abstract— Automatic extraction of road curbs from uneven,
unorganized, noisy, and massive 3-D point clouds is a challenging
task. Existing methods often project 3-D point clouds onto
2-D planes to extract curbs. However, the projection causes loss
of 3-D information, which degrades the performance of the
detection. This paper presents a robust, accurate, and efficient
method to extract road curbs from 3-D mobile LiDAR point
clouds. Our method consists of two steps: 1) extracting candidate
points of curbs based on the proposed novel energy function and
2) refining candidate points using the proposed least cost path
model. We evaluated the method on a large scale of residential
area (16.7 GB, 300 million points) and an urban area (1.07 GB,
20 million points) mobile LiDAR point clouds. Results indicate
that the proposed method is superior to the state-of-the-art meth-
ods in terms of robustness, accuracy, and efficiency. The proposed
curb extraction method achieved a completeness of 78.62% and a
correctness of 83.29%. Experiments demonstrate that our method
is a promising solution to extract road curbs from mobile LiDAR
point clouds.

Index Terms— 3-D point clouds, energy function, least cost
path, mobile LiDAR, road curbs.

I. INTRODUCTION

MOBILE LiDAR systems (MLS) are a newly emerging
technology which collects 3-D information of objects

while vehicles drive at a posted speed [1]. It becomes more
and more popular in analyzing 3-D point clouds because of
its high density, efficiency, and cost-effectiveness and provides
the possibility to extract the microobjects, such as road curbs.

Road curb extraction from 3-D point clouds is a basis for
several types of research, such as road surface analysis, driving
simulation, safe parking, autonomous driving, and traffic envi-
ronment understanding. However, point clouds acquired by
MLS are often found to be uneven, unorganized, noisy, and
massive, thereby making the curb detection a challenging task.

In this paper, we present a robust, accurate, and efficient
method to extract road curbs from mobile LiDAR point clouds.
The main contributions of this paper are the following: 1) we
propose a novel energy function to extract candidate points
of curbs from mobile LiDAR point clouds; 2) we propose
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a least cost path model (LCPM) to link candidate points into
complete curbs; and 3) we conduct a comprehensive evaluation
of the proposed method using large-scale data.

This paper is organized as follows. In Section II, we review
the state-of-the-art methods related to road curb extraction.
In Section III, we propose a new energy function to extract
candidate points of curbs and design an LCPM to connect
candidate points into global optimization curbs. In Section IV,
we evaluate the robustness, accuracy, and complexity of the
proposed method. The conclusions are presented in Section V.

II. RELATED WORK

A straightforward method for road curb detection usu-
ally makes use of elevation information. For example,
algorithms [2]–[6] focus on detecting objects in terms of the
elevation difference. It is possible to obtain road curbs by
elevation filtering, however, at the compromise of robustness.
There are no reliable cues to design adaptive thresholds for
the low elevation curbs in different scenes. These methods
produce attractive results in the straight roads with the same
elevation. Nonetheless, they fail to work in occluded, sunken,
or uphill road areas.

Recent methods [7]–[10] focus on models that incorporate
more prior knowledge, such as width, elevation, and density, to
form descriptors for classifying regions and edges. The prior
knowledge-based method [11] uses a predefined curb model in
terms of the elevation jump, point density, and slope change to
provide potential location of curbs from mobile LiDAR point
clouds. However, this method does not work well on data sets
with different geometrical features, such as large slopes or
uneven road surface, due to the use of nonrobust 3-D features.

The typical technique for boundary extraction is the active
contour model (Snake) [12]. Snake is widely applied to curb
extraction from images or images generated from 3-D point
clouds’ projection [13]–[15]. However, the projection loses
3-D information that will degrade the performance of the
extraction. This is also the main drawback of the extraction
methods [16]–[18] based on 2-D images. Moreover, Snake
needs a manual initialization to start the iteration.

The methods [19], [20] combine LiDAR point clouds and
the corresponding images to detect road curbs, but fail to work
when there are occlusions caused by cars, pedestrians, or trees
along the road. Moreover, the registration of LiDAR point
clouds and images is not reliable due to the duplication of
moving objects.
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Fig. 1. Different definitions of the 3-D gradient. (a) Elevation difference.
(b) Intensity difference.

In summary, the challenges in curb detection from mobile
LiDAR point clouds are as follows. First, the data are difficult
to process due to its uneven, unorganized, noisy, and massive
nature. Second, there is no much reliable information, such as
color, intensity, and texture, for segmentation or classification.
Third, since the LiDAR sensors mounted on the moving
vehicle scan objects line by line, there will be misalignments
or duplicates of moving objects and occlusions.

This paper aims to provide a robust solution for road
curb extraction from mobile LiDAR point clouds. In a pre-
processing step, we remove the nonground points by using
elevation histogram and organize the ground point clouds into
voxels. Then, we extract candidate points of curbs using the
proposed energy function. Finally, we use the proposed LCPM
to complete optimal curbs.

Comparison with the existing curb extraction algorithms,
our method has no risk of losing 3-D information. Since all
existing methods lack experiments on large-scale data, we
evaluate our algorithm on large-scale residential and medium-
sized urban data to verify the proposed method.

III. METHOD

A. Definition of 3-D Sampling Density and
Density Gradient

In 2-D images, the gradient shows the increase or decrease
in the magnitude of the intensity. However, to the best of
our knowledge, no unified definition of the gradient exists for
3-D point clouds to date. This paper analogizes the gradient in
2-D to obtain the gradient definition in 3-D, which only uses
the geometric information of the MLS measurement.

In this paper, the gradient concept is extended to 3-D point
clouds through considering the points’ density in a local area.
At first, voxels are generated for the point cloud. Then, the
intensity of each voxel is defined by the points’ density,
i.e., the number of the point inside the voxel. Finally, our
3-D sampling density gradient is calculated by the difference
of the intensity between adjacent voxels. The intensity is
approximated by the number of points in a local area.

One existing 3-D gradient definition is based on elevation
difference between adjacent points. In Fig. 1(a), the eleva-
tion along z-axis is increasing evenly, so the gradient is a
constant along z-axis and zero along y-axis. However, the
gradient along x-axis varies due to different elevations. This is
not desirable, because the gradients along the normal direction
of the façade (i.e., along x-axis) are different, as shown
in Fig. 1(a). Our definition of 3-D sampling density gradient

Fig. 2. Three areas in road point clouds, namely, sidewalk, roadway, and
curb.

is based on the intensity difference between the adjacent
points. Our gradient is zero along either y-axis or z-axis and
a constant along x-axis, as shown in Fig. 1(b), which better
represents the real situation. We use this new 3-D intensity and
sampling density gradient definition throughout this paper.

Similar to the change produced by a shift for a pixel in the
2-D image [21], we use (1)

C(x, y, z) =
∑

�x,�y,�z

[I�x+x,�y+y,�z+z − Ix,y,z]2
(1)

to define the magnitude of change (squared) in the diagonal
direction for a point p(x, y, z) in a small shift (�x,�y,�z)
where Ix,y,z is the intensity, which is the number of points in
a local area around p. Our point clouds are uneven and unor-
ganized. The Euclidean distance between each point is various
and neighbors of each point are unknown. Thus, we use voxel
of a suitable size to represent each local area and organize 3-D
point clouds in a sparse 3-D matrix. The value of each voxel
is the intensity, which is the number of points in each voxel.
Finally, we can deal our data, such as pixels, in 2-D image
with the voxel-based representation. (�x,�y,�z) means the
coordinate difference between two voxels, which can also be
treated as a directional vector, for example, (1, 0, 0) is the
direction of the x-axis, (1, 1, 0) is the direction of 45° in the
X OY , (1, 0, 1) is the direction of 45° in the X O Z , and so on.
The coordinate difference should be an integer.

B. Classification of the Road Areas

There are mainly three regions in road point clouds, as
shown in Fig. 2: roadway, sidewalk, and curb. The curb
connects the roadway and the sidewalk, and it is usually lower
than 0.25 m. The Euclidean distance between two points in our
data is larger than 0.004 m. The elevation difference between
sidewalk and roadway is small. Thus, the road curb detection
cannot heavily rely on the elevation difference.

Suppose that the point clouds are aligned with a 3-D
coordinate system O-XY Z , as shown in Fig. 2, the curb is
in parallel with the x-axis and xoz plane, and roadway and
sidewalk are in parallel with the xoy plane.

Denote Gx , Gy , and Gz as our sampling density gradients
of a voxel along the x-axis, y-axis, and z-axis directions,
respectively, as shown in Fig. 3. There will be three primary
situations for our gradients of a voxel in Fig. 2.

1) The voxel within the surface: there is only one large
gradient, such as the large Gy in the curb areas and the
large Gz in the roadway or sidewalk areas.
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Fig. 3. Sampling density gradients of a voxel in each axis direction.

Fig. 4. Three-dimensional Sobel. (a) Cubex . (b) Cubey . (c) Cubez .

2) The voxel in the intersection of two surfaces: there
are more than one large gradient, such as the large
Gy and Gz along the curb edges.

3) The voxel in the intersection of three mutually nonpar-
allel surfaces: all gradients are large, such as the curb
corners.

Therefore, we conclude that if gradients of a voxel are large
in more than one direction, the points in this voxel potentially
belong to the curb.

C. Mathematical Model

Equation (1) can be rewritten as (2), the Taylor series
expansion with O(�x2,�y2,�z2) as the remainder term

C(x, y, z) =
∑

�x,�y,�z

[�x · XG + �y · YG + �z · ZG

+ O(�x2,�y2,�z2)]2 (2)

where XG , YG , and ZG are the sampling density gradients,
which are defined as

XG =
(

∂ I

∂x

)
≈ I · Cubex

YG =
(

∂ I

∂y

)
≈ I · Cubey

ZG =
(

∂ I

∂z

)
≈ I · Cubez (3)

where Cubex , Cubey , and Cubez are three 3 × 3 × 3 operators
extended from Sobel [22], as shown in Fig. 4. I is a 3 ×3 ×3
matrix whose elements are the intensity of each voxel and its
neighbors.

We obtain C(x, y, z) for each voxel as

C(x, y, z) = (XG · �x)2 + (YG · �y)2 + (ZG · �z)2 + 2

× �x · �y · XG · YG + 2 × �y · �z · YG · ZG

+ 2 × �x · �z · XG · ZG

= (�x,�y,�z)M(�x,�y,�z)T ≥ 0 (4)

Fig. 5. Four areas for different ranges of the eigenvalues α, β, and γ .
1: All eigenvalues are small. 2: Only one large eigenvalue. 3: Two large
eigenvalues. 4: All eigenvalues are large.

Fig. 6. Related triangle. (a) Initial triangle Q. (b) Increase the height of Q.

where M is⎛
⎝ X2

G XG · YG XG · ZG

XG · YG Y 2
G YG · ZG

XG · ZG YG · ZG Z2
G

⎞
⎠.

M is a semipositive symmetric matrix. Its eigenvectors
are mutually orthogonal, and eigenvalues α, β, and γ are
not less than 0. According to road areas, three possibilities
will be observed for each voxel: 1) the voxel belongs to the
surface area, when only one large eigenvalue exists; 2) the
voxel belongs to two surfaces’ intersection when two large
eigenvalues are observed; and 3) the voxel belongs to the
intersection area of three mutually nonparallel surfaces, when
three large eigenvalues are observed.

In 2-D images, the edges have a large gradient in one
direction. The intersection of two edges is the corners, which
have a large gradient in more than one direction. Similarly,
for our sampling density gradient in 3-D point clouds, a large
gradient in one direction means planar surface areas. The
edges are the intersection of two surfaces. Thus, the candidate
points of curb edges have large gradients in at least two
directions. Now, our sampling density gradients are related
to the eigenvalues of the matrix M. We show different ranges
of eigenvalues in Fig. 5. There are four areas, such as all
of eigenvalues are small (area 1), only one of eigenvalues is
large (area 2), two of eigenvalues are large (area 3), and all
of eigenvalues are large (area 4).

We can decide the area of each voxel by a thresholding
method. However, it is difficult to tune different thresholds
for each eigenvalue. Thus, we form an energy function based
on the eigenvalues α, β, and γ . The energy corresponding to
each voxel can map to the areas in Fig. 5. If the result of
mapping is in area 3 or area 4, the voxel is chosen as the
candidate curb edges.
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D. Construction and Analysis of the Energy Function

We design the energy function based on a triangle Q.
The energy will be related to the area S of this triangle.
The eigenvalues α, β, and γ are related to angles α′, β ′, and γ ′
of Q. Sides a, b, and c are in opposite to α′, β ′, and γ ′,
respectively, as shown in Fig. 6. Sampling density gradients
large in two or three directions are now related to the triangle
Q with at least two large angles.

Fig. 6(a) is the initial triangle. Increase the height of the
triangle Q to change the base angles α′ and β ′ together.
One can find that the area S is growing as increasing the two
base angles. If the angle γ ′ is infinitely close to 0, S achieves
the maximum, as shown in Fig. 6(b).

Our idea is to relate the energy E to the area S to ensure
that, if E is large, there will be more than one large eigenvalue.
The challenges are relations among angles, eigenvalues, and
the length of sides. The following is the derivation of the
energy function.

Let

ϕ = π

arctan α + arctan β + arctan γ

α′ = arctan α × ϕ, γ ′ = arctan γ × ϕ, β ′ = arctan β × φ.

(5)

The area S is derived according to the sine theorem

S = 1

2
a × b sin γ ′ = 1

2
× sin β ′

sin γ ′ × sin α′

sin γ ′ × sin γ ′ × c2

= c2

2
× sin α′ × sin β ′

sin(π − (α′ + β ′))

= c2

2
× sin α′ × sin β ′

sin α′ cos β ′ + cos α′ sin β ′

= c2

2
× tan α′ × tan β ′

tan α′ + tan β ′ (6)

and

tan α′ = tan(arctan α × T )

= tan

(
arctan α

arctan α + arctan β + arctan γ
× π

)

tan β ′ = tan(arctan β × T )

= tan

(
arctan β

arctan α + arctan β + arctan γ
× π

)
. (7)

Both tan and arctan are monotonically increasing functions,
so we have

S ∝ tan α′ ∝ arctan α ∝ α

S ∝ tan β ′ ∝ arctan β ∝ β. (8)

Relating the energy E to the area S, we have

E ∝ αβ

α + β
× c2. (9)

The side c can be regarded as the weighting coefficient.
To visualize the energy E , we calculate the result of (9)
using a range [0, 10 000] for α and β. We can define c as
a constant 1 or a variable. The sum of the eigenvalue α and

Fig. 7. Visualization of the energy E . (a) c = 1. (b) c = (α + β).

Fig. 8. Increase the area S by enlarging only one base angle α′.

β is a real number, thus we can define c as (α + β). Under
this definition, the larger the α and β values, the larger the
E value. Fig. 7(a) and (b) is the visualization of E when c is
a constant 1 and a variable (α + β), respectively. As seen
from Fig. 7, when c is defined as (α + β), large energy
corresponds to the situation where both α and β are
large.

With increasing the height of the triangle Q by enlarging
only one base angle α′, as shown in Fig. 8, the area S is also
increased. It means that large energy E can be observed in
noncurb areas with only one large eigenvalue. To address this
problem, we refined (9).

In the obtuse triangle Q0, the angles β ′ and γ ′ are small.
If we treat the side a as the fixed bottom side and do the
same analysis as in Q, its area S will be smaller than the
triangle with a large β ′ and γ ′. Thus, we calculate the sum
of areas based on all three sides (10) to ensure that the sum
S′ is large only when there is more than one large angle, and
consequently, we have

S′ = c

2

2 × tan α′ × tan β ′

tan α′ + tan β ′ + a

2

2 × tan β ′ × tan γ ′

tan β ′ + tan γ ′

+ b

2

2

× tan α′ × tan γ ′

tan α′ + tan γ ′ . (10)

For our energy function in 3-D space, c is unified as
(α + β + γ ) and we relate our energy to the sum S′ as

E ∝ αβ

α + β
× (α + β + γ )2 + αγ

α + γ
× (α + β + γ )2

+ γβ

γ + β
× (α + β + γ )2 (11)

(α + β + γ )2 is regarded as the coefficient and we let

E =
(

αβ

α + β
+ αγ

α + γ
+ γβ

γ + β

)
× (α + β + γ )2. (12)

We plot the energy E based on different ranges of the
eigenvalues α, β, and γ using (12), as shown in Fig. 9. The
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Fig. 9. Three-dimensional visualization of the energy function E . (a) Plot of E based on different ranges of α, β, and γ . (b) E is small (<40), which
corresponds to areas 1 and 2 in Fig.5. (c) E is large (>157), which corresponds to areas 3 and 4 in Fig. 5.

magnitude of E is scaled to [0, 255], and α, β, and γ are
ranged from 1 to 100. From Fig. 9(a), any two of α, β, and
γ are large results in a large E and the largest α, β, and γ
causes the maximum E indicated by the red corner. If the
voxel is in the block or surface, E is small (<40), as shown
in Fig. 9(b), which corresponds to areas 1 and 2 in Fig. 5. If
the voxel is in the curb edges or corners, E is large (>157),
as shown in Fig. 9(c), which corresponds to areas 3 and 4
in Fig. 5. The other E (2616510 [40, 157]) is the unreliable
areas correspond to area 3 in Fig. 5. This energy function will
be used to detect curbs from road points.

In this paper, voxels corresponding to the top 20%
energy are chosen as candidate curbs. Practically, we obtain
the energy E without the computation of eigenvalues or
eigenvectors of the matrix M. To calculate E in a low
complexity, we decompose the matrix M as Mxoy, Mxoz,
and Myoz on the X OY , Y O Z , and xoz planes, respectively,
as follows:

Mxoy =
(

XG · XG XG · YG

XG · YG YG · YG

)

Mxoz =
(

XG · XG XG · ZG

XG · ZG ZG · ZG

)

Myoz =
(

YG · YG YG · ZG

YG · ZG ZG · ZG

)
.

Now (12) can be calculated effectively by

E = Det (Mxoy)

T r(Mxoy)
× Tr(M)2 + Det (Mxoz)

Tr(Mxoz)
× T r(M)2

+ Det (Myoz)

Tr(Myoz)
× Tr(M)2 (13)

where Det means the determinant and Tr is the trace.
From (13), there is no need to compute the eigenvalues or
eigenvectors of the matrix. The complexity of the energy
computation is linear time, which is significant for large-scale
point cloud processing.

It is worth pointing out that Det(Mxoy), Det(Mxoz), and
Det(Myoz) are 0, because we use the discrete form (3) to obtain
the sampling density gradient approximately. To overcome this
problem, we smooth the input I by convolving a 3 × 3 × 3

Gaussian kernel h

h(i, j, k) = 1√
2πσ 2

e
− (i−1)2+( j−1)2+(k−1)2

2σ2 (14)

where σ is the standard deviation of the voxels in the con-
volutional operation. For example, the voxel at (x, y, z) is
smoothed as

Ih(x, y, z) = I (x, y, z) ⊗ h

=
2∑

i=0

2∑
j=0

2∑
k=0

(I (x, y, z) · h(i, j, k)) (15)

where the output Ih is the smoothed input I . From the asso-
ciative property of convolution for linear system, the gradient
of the convolution is equal to the convolution of the gradient,
as shown in (16). Thus, the gradient calculated from Ih is
also smoothed and Det(Mxoy), Det(Mxoz), and Det(Myoz) are
not 0

∂(I (x, y, z) ⊗ h)

∂x
= ∂ I (x, y, z)

∂x
⊗ h. (16)

E. Least Cost Path Model

Candidate curb edges obtained by optimizing the energy
function are incomplete and noisy. We can refine the curbs by
line fitting methods, such as least square (LS) fitting [23],
Hough transform (HT) [24], and random sample consen-
sus (RANSAC) [25]. Nevertheless, these methods highly rely
on the number of candidate curb points and do not consider the
noncandidate points and the cost for linking candidate points.
The linking of the curb candidate points with few inliers is
problematic. We propose a new robust method to link curb
candidate points into a complete curb.

Our model consists of a data term and a smoothness term, as
shown in (17), to represent different refinement paths. N is the
number of nodes in the final path, (u, v,w) is the coordinate
of the current node i , and j is the node prior to i in the path.
L N is the cost of the refinement path

L N =
N∑
i

(Datai (u, v, w) + Smoothnessi, j (u, v, w)). (17)

The data term refers to the cost of a path containing all
selected nodes and the smoothness term is the cost connecting
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Fig. 10. Nodes formed by voxels.

Fig. 11. Graph to be optimized by the LCPM. This graph consists of N nodes,
namely, P1, P2, P3, . . . , P N . The cost of each node and edge is calculated
by the data term and smoothness term. There will be (X × Y × Z)× (N − 1)
edges in the graph leading to (X × Y × Z)(N−1) paths from the node P1 to
the end P N . Our objective is to find the least cost path among them.

node i with the prior node j in the path. The definitions of
data term and smoothness term are shown in

Datai (u, v, w) =

⎧⎪⎨
⎪⎩

0, if i ∈ CanPs

penaltyD, if i /∈ NCanPs

penaltyV, if i ∈ VirPs

Smoothnessi, j (u, v, w) = penaltyS × Dis(i, j) (18)

where CanPs is the set of voxels filled with candidate points,
NCanPs is the set of voxels filled with noncandidate points,
and VirPs is the set of virtual nodes for occlusions.

As shown in Fig. 10, each voxel forms a node to construct
LCPM. If the node i is a voxel filled with candidate points, the
data term is 0; if the node i is a voxel filled with noncandidate
points, the data term is penaltyD; if there is no voxel between
two nodes in the axis direction, we fill this no voxel area with
virtual nodes and the data term is peanltyV.

The smoothness term is calculated by penaltyS and the
Euclidean distance Dis between i and j . Each refinement path
corresponds to a cost L N in (17) and the least cost is the
optimal solution.

The graph to be optimized is constructed by the candi-
date points. Our goal is to connect them into the optimal
curbs. Assuming that there are N nodes in the results, as
shown in Fig. 11. Node Pi+1 is shifted from node Pi by
(�x,�y,�z). The shifts are integer vectors and range from
0 to X , 0 to Y , and 0 to Z along the x-axis, y-axis, and z-axis,
respectively.

It is infeasible to exhaustively search all (X × Y × Z)(N−1)

paths to find the global optimization. The reduction of the

Fig. 12. Principal direction obtained by SVD.

Fig. 13. New least cost path of graph � when added a new node Pn
u+n,v,w.

search space is based on the observation that the least cost
path is in the principal direction of the candidate points. Thus,
we can search the optimal path along the principal direction
progressively.

Since the road is often continuous, the principal direction
can be a piecewise constant in the search space. We estimate
the principal direction of the path using the singular value
decomposition (SVD) method. Assuming that there are q
candidate points in the search area, from SVD, we have

Dq×3 = Uq×qSq×3VT
3×3 (19)

where D is the input matrix decomposed into the matrices U, S,
and V. Denote the first, the second, and the third column of V
as V1, V2, and V3, respectively. The principal component V1,
which corresponds to the largest eigenvalue, is chosen as the
principal direction. The obtained principal direction is shown
in Fig. 12. The search space is fixed as 100×100×100 voxel3.

We obtain the step size (�x,�y,�z) by⌈(
1 − ‖V1‖2√|V1‖2 + ‖V2‖2 + ‖V3‖2

)
· (XC , YC , ZC )

⌉
(20)

where Xc, Yc, and Zc are the length of the x-axis, y-axis, and
z-axis in the current search space.

Next, we propose the LCPM to find the optimal path. The
path proceeds along the principal direction of the search space,
as shown in Fig. 13, where the principal direction is supposed
to be the x-axis.

We add a starting node P0
u,v,w for each path to be refined.

The path is from u to u + m in the principal direction. The
cost of the connection between the starting node P0

u,v,w and
other nodes is 0. Assuming that we have found the optimal
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Fig. 14. Process of collecting data.

path from the starting node to each node, now add a new node
Pn

u+n,v,w in graph �. The least cost from Pn
u+n,v,w to its prior

node is calculated by (21). For the newly added node i , the
optimization from the starting node to i contains the solution
from the starting node to its prior node j . L j is known, so the
computation of Li incurs quite a low complexity

Li = num
min
j=1

(L j + Datai (u, v, w) + Smoothnessi, j (u, v, w)).

(21)

We store the least cost path from the starting node to each
node. Each path has a cost obtained by (17). We refer to the
least cost path to back track the complete path from the end
node. Nodes in this least cost path are mapped to voxels and
used to refine the incomplete curb edges. Since LCPM takes
the connection costs into consideration, it can bring back the
noncandidate points to obtain the optimization under the given
cost function.

IV. EXPERIMENT AND RESULTS

A. Data Collection

There are three main components in the mobile LiDAR
scanning system, namely, laser scanner, Global Navigation
Satellite System (GNSS), and inertial measurement unit
(IMU), as shown in Fig. 14. The scanner measures the distance
between the system and the object and the angle of the launch
is known to calculate the object position. The GNSS locates
the global position of the scanner. The IMU is to estimate the
position of the scanner when GNSS does not work.

Our mobile LiDAR data are acquired by the Riegl
VMX-450 system. This laser scanner uses a narrow infrared
laser beam at a very high scanning rate, which can be up to
200 lines/s and enables full 360° beam deflection without any
gaps. Our data are collected in a 246142.05 m2 residential area
consisting of various types of roads. The data size is larger
than 16.7 GB in “txt” format and contains about 300 million
points. The geographic location is from (51°4’15.12” N,
114°5’1.37” W) to (51°4’17.12” N, 114°4’7.47” W). The
length is 1166.55 m; the width is 211 m, and the elevation
difference is 38.59 m.

Fig. 15. Process of removing nonground regions. (a) Input point clouds.
(b) Elevation histogram. (c) Result of removing nonground areas.

Fig. 15(a) is a piece of the input data. In the preprocessing
steps, we remove the nonground areas, such as trees, houses,
and cars. As shown in Fig. 15(b), since the road points are
much denser than nonground areas, there is a peak in the
elevation histogram. The function f ′(x) is the derivative of the
function f (x), which is used to describe the elevation x and
number of points y. The global extremal point in f (x) meets
f ′(x +ε)× f ′(x −ε) < 0, where ε is a small positive number.
When x is equal to m, the number of points y achieves the
maximum. Two local extremal points in f ′(x) near the point
x = m are x = A and x = B . In our algorithm, the elevation
from m −[2 × (m − A)] to m −[2 × (m − B)] is chosen as the
ground areas, as shown in Fig. 15(b). The result of removing
nonground areas is shown in Fig. 15(c).

We use the voxel-based representation to organize the
ground point sets. The volume of each voxel is selected
as much as 0.04 × 0.04 × 0.04 m3. The intensity of each
voxel is used to calculate the sampling density gradient. Both
penaltyD and penaltyS depend on the result of the curb point
extraction. As shown in Fig. 16, the horizontal axis means
the percentage of candidate points in the search space and
the vertical axis means the penalty. When the percentage is
smaller than 0.04, we think there are no curbs in the current
search space. If the extracted candidate points are limited, the
penalty penaltyD should be small in order to consider more
noncandidate points whereas the penalty penaltyS should be
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Fig. 16. Selection of the penalty.

Fig. 17. Process of LCPM.

large to keep the principal direction. If they are sufficient,
penaltyD should be large enough to consider more candidate
points whereas penaltyS should be small in case of the zigzag
curb. The penalty penaltyV should be large, which is 1000 in
our algorithm.

The process of LCPM is shown in Fig. 17 and the optimiza-
tion starts from the left to right. At the intersections, where the
principal direction changes greatly, we use a curve for missing
curb areas. For occlusions, we find the optimal path based on
the virtual nodes.

V. EXPERIMENTS

We evaluate our algorithm in terms of three aspects:
robustness, accuracy, and efficiency. To further evaluate the
robustness of our algorithm, we test it on two large-scale road
environments, including a residential area collected by the
Riegl VMX-450 system (16.7 GB, 300 million points) and
an urban area collected by the OptechLynx scanner system
(1.07 GB, 20 million points).

1) Extraction of the Curbs: Fig. 18(a) and (b) shows the
projection of curbs on the X OY and xoz planes, respectively.
Most of the existing methods use these projections as the input
to extract curbs. As mentioned before, these methods lose all
3-D information and can hardly deal with occlusions. Our
algorithm uses the full 3-D information of the point clouds
and can deal with the challenging situations caused by either
scanner system or complex road environments.

Fig. 18. Descriptions of curbs. (a) Projection on X OY . (b) Projection on
X O Z .

Fig. 19. Uneven curb points. (a) Curbs with sparse points. (b) Extracted
candidate points of (a). (c) Refinement of (b). (d) Curbs with dense points.
(e) Extracted candidate points of (d). (f) Refinement of (e).

Fig. 20. Various densities. (a) Densities of points are varying from left side
to right side of the road. (b) Extracted candidate points of (a). (c) Refinement
of (b).

The following are the results of our method on different
challenging situations. To better show the results, we highlight
results by large red points.

a) Uneven density: The curb points may be sparse or
dense, as shown in Fig. 19(a) and (d). The extracted candidate
points are shown in Fig. 19(b) and (e), respectively. The
candidate curbs are noisy and incomplete. By using LCPM, we
link them into the optimal curbs, as shown in Fig. 19(c) and (f),
respectively.

An example of varying densities between right and left side
of the road is shown in Fig. 20. The various densities lead to
the unreliable computation of our sampling density gradients.
This causes undesirable extraction, as shown in Fig. 20(b).
As seen from Fig. 20(c), although the various densities may
cause incorrect candidate points extracted, our model still can
obtain the desirable curbs.

The density of the point clouds collected from various
systems is different. To test our algorithm, we downsam-
ple the road point clouds to different cases, as shown
in Fig. 21(a)–(d). Results show that our method is robust to
the sparsity. Even for the case where the point clouds are
downsampled to 1%, the proposed method can still extract
the curbs, which is difficult for any existing methods.

One challenging problem, as shown in Fig. 21(a), is that
there are gaps in point clouds caused by the MLS itself. These
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Fig. 21. Sparse points. Sparse road by sampling data in (a) 100%, (b) 50%,
(c) 10%, and (d) 1%.

Fig. 22. Missing curbs. (a) Missing curb areas in 2-D image. (b) Missing
curb areas in 3-D point clouds. (c) Missing candidate points in curb areas.
(d) Our refined result of (c). (e) Results of an entire crossroad.

gaps are easy to be wrongly detected as curbs but well filtered
by our method.

b) Missing curb areas: The curb on the road may be
missing, as shown in Fig. 22(a), which is designed for
wheelchairs and bicycles. There is no curb information in
these areas, as shown in Fig. 22(b). This is our limitation,
because there is only one large sampling density gradient
in these areas. The candidate points are missing totally, as
shown in Fig. 22(c). If missing curb areas are along the
straight road, we can obtain the complete curbs based on
the neighbor information. However, if these areas are at the
intersection road, we can only use a fixed curve based on
the prior knowledge to link curbs, as shown in Fig. 22(d).

Fig. 23. Slope and occlusion. (a) Sloping road. (b) Occluded road. (c) Results
of (a). (d) Results of (b).

Fig. 22(e) is the result of an entity crossroad to demonstrate
our results.

c) Slope and occlusion: To test the sloping road, we lift
one side of the road up to 30°, as shown in Fig. 23(a). This
is difficult for extraction algorithms based on the elevation.
For occlusions caused by cars or pedestrians on the road, as
shown in Fig. 23(b), LCPM considers the virtual nodes to find
the optimal path.

The change C , which is used to calculate the energy, is
independent of the coordinate system. Thus, our method is
invariant to the rotation, and hence, curbs in the slope are
well extracted with our algorithm. Extracted candidate points
and refinements are shown in Fig. 23(a) and (c).

As opposed to the missing curb areas, there are no points
in occlusions. In our algorithm, occlusions are filled with
virtual nodes. To connect the virtual nodes, a large pentaltyV
is used. For a small occlusion, the optimal path passes through
the missing curb areas, as shown in Fig. 23(d). However,
for a large occlusion, we empirically conclude that there is
no curb when the percentage of candidate points is lower
than 0.04. Extracted candidate points and refinements are
shown in Fig. 23(b) and (d).

d) Large-scale experiments: The residential area mostly
contains trees, parking cars, and houses. Fig. 24(a)–(f) cor-
responds to six parts of the residential area. As shown
in Fig. 24(a), we zoom into three areas to show the results,
including the straight curbs (area A), the intersection area
(area B), and the occluded area (area C). Curbs in these areas
are well extracted and refined.

The urban area mostly contains trees, buildings, and traffic
facilities, as shown in Fig. 24(g). We zoom into two areas to
show the results, including the occluded area (area A) and an
alley (area B). In both the areas, curbs are well extracted.

To visualize the difference between our results and the
ground truth, we show that the candidate points, resultant
curbs, ground truth, and the overlap in Fig. 25 refer to
Fig. 24(a).

Results in Figs. 24 and 25 demonstrate that our method is
robust against large-scale data testing. We also use videos to
show our results in 3-D in the online supplementary materials.

2) Quantitative Evaluation: In this section, we quantify
the difference between our results and the ground truth and
compare our method with other related work.
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Fig. 24. Experimental results, including, a large residential area and an urban area. (a) Results of Part 1 from the large-scale residential area. (b) Results of
Part 2 from the large-scale residential area. (c) Results of Part 3 from the large-scale residential area. (d) Results of Part 4 from the large-scale residential
area. (e) Results of Part 5 from the large-scale residential area. (f) Results of Part 6 from the large-scale residential area. (g) Results of the large-scale urban
area.

Assuming there is a point p in the clouds, L is the curb
obtained by our method and L ′ is the ground truth obtained
by the manual method. For the classification, there are four
results of p, namely, true positive (TP) if p ∈ L ∩ L ′, true
negative (TN) if p ∈ L̄ ∩ L̄ ′, false positive (FP) if p ∈ L ∩ L ′,
and false negative (FN) if p ∈ L̄ ∩ L ′, as shown in Fig. 26.
We evaluate the difference in terms of four aspects based
on TP, TN, FP, and FN [26], namely, TP rate (TPR), TN
rate (TNR), positive predictive value (PPV), and negative and
predictive value (NPV).

We need a parameter D to decide whether the test point p
belongs to L or L ′. If the distance between p and L or L ′

is less than D, p ∈ L or p ∈ L ′, else p ∈ L̄ or p ∈ L̄ ′, as
shown in Fig. 26. In the following, we show the accuracy
under different D values in Table I.

Table I reports the quantitative results of the above large-
scale experiments, where SL, Int, and All, respectively, denote
the straight areas, intersections, and all areas. The extracted
curbs consist of 294 418 points and 115 971 of them belong
to straight areas and others are intersections. The ground truth
contains 115 240 points and 24 258 of them belong to straight
areas and others are intersections. TPR is TP/(TP + FN) means
the probability of true curbs that can be extracted, which is the
completeness of curbs. From Table I, it can be observed that
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Fig. 25. Visualization of the difference between our results and the
ground truth for Part 1. (a) Our results. (b) Ground truth. (c) Overlap
between (a) and (b).

Fig. 26. Four types of results for each point, namely, TP, TN, FP, and FN.
L is the result of our method and L ′ is the ground truth. The width of L or
L ′ is 2 × D.

TABLE I

QUANTITATIVE EVALUATION

when the distance parameter D is 0.4 m, the completeness
of curbs is up to 78.62%. PPV is TP/(TP + FP) means that
the extracted curbs belong to the true curbs, which is the
correctness of the curbs. When D is 0.4 m, the correctness
of curbs is up to 83.29%. TNR is TN/(FP + TN) means the
probability of noncurb areas that can be extracted, which is
the completeness of noncurbs. NPV is TN/(TN + FN) means
the extracted noncurb points belong to the noncurb areas,
which is the correctness of the noncurbs. Table I indicates that
at intersections, our method has a poor performance, mainly
due to the absence of curb information.

3) Comparison With Existing Methods:
a) Detection methods: We compare our

algorithm with related detection methods, including,
Yu et al. (EEC: elevation gradient computation,
elevation gradient filtering and corner selection) [6],
Kellner et al. (IEPF: iterative end-point fitting) [10],
Rodríguez-Cuenca et al. (TML: thresholding, morphological

Fig. 27. Comparison with the existing curb detection methods, including,
EEC, IEPF, TML, and CS. (a) TPR to evaluate the completeness. (b) PPV to
evaluate the correctness.

processing, and linear feature detection) [16], and Yang et al.
(CS: curb structure) [11], using the TPR and PPV to evaluate
the completeness and correctness of curbs.

There are three steps in EEC, namely, elevation gradient
computation, elevation gradient filtering, and curb corner point
selection. This method is based on the elevation filtering,
which fails when curbs are in quite different elevations or
occluded. The IEPF uses iterative end-point fitting algorithm
to segment the scenes. This algorithm relies on the elevation
of curb and the flatness of the road to detect the curbs, which
is difficult to work in complex urban scenes. TML uses the
projection to detect curbs by three steps, namely, thresholding,
morphological processing, and linear feature detection. Each
step needs many parameters, which are difficult to choose.
CS is proposed to detect road curbs by a predefined curb
model, which is based on the elevation jump, point density,
and slope change.

We compare with the above-mentioned methods using the
data of Part 1. As shown in Fig. 27, our method is much
better than the above-mentioned methods in detecting curbs,
especially when D is small. The accuracy of TML can be
high, but it relies on the parameters heavily, which is difficult
to tune.

b) Refinement methods: We also compare our method
with some typical refinement methods, including, LS, HT,
and RANSAC. We test the robustness of our method against
noise by adding a random number from −T × d to T × d to
the coordinate of each point, where d is the minimum point
distance between two points and T is to set the range.

For a small random noise (T = 2), the candidate points
extracted by our method are shown in Fig. 28(a). Increasing
the level of the random noise (T = 4), we achieve an
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Fig. 28. Comparison with the existing refinement methods. (a) Extracted
candidate points from a small random noise (T = 2). (b) Extracted can-
didate points from a large random noise (T = 4). (c) Refinement by LS.
(d) Refinement by HT. (e) Refinement by RANSAC. (f) Refinement by LCPM.

undesirable result, as shown in Fig. 28(b). These candi-
date points, containing outliers, are the input for the later
refinement.

The results of LS, HT, and RANSAC and our method are
shown from Fig. 28(c)–(e), respectively. LS fails to refine
curbs due to incorrect mean point by outliers, and HT and
RANSAC obtain acceptable curbs from our candidate points.
3-D HT obtains the curb correctly while requires the best
line in the exactly the same plane, which is not always the
case in point clouds. For RANSAC, only if all inliers are
obtained, the line can be fitted accurately. Moreover, all these
typical refinement methods do not consider the cost to connect
each point. If there are few candidate points or few straight
lines, both HT and RANSAC can hardly extract curbs. In this
condition, LCPM obtains the optimal curbs by considering
both candidate and noncandidate points, which enhances the
robustness considerably, as shown in Fig. 28(f).

4) Computational Complexity: Normally, there are three
steps in each algorithm, namely, the generation of the region
of interest (ROI), the extraction of candidate curb points, and
the refinement of incomplete curbs. The complexity of the
extraction in each algorithm is described in the following.

EEC relies on the curb profiles vertical to the road surface
and 10–20 cm above the road to generate ROI. The generation
uses a thresholding method (O(N)). This is followed by the
extraction of the candidate points, including, elevation gradi-
ent computation (O(N)), elevation gradient filtering (O(N)),
and curb points selection (O(N)). Finally, the refinement as
mentioned in their paper can be LS (O(N3)).

IEPF calculates the distance between each point and a
straight line, obtained by connecting the start and end point
of a scan line, to generate the lateral distance (O(N)) in the
preprocessing. The points are segmented by the lateral distance
and classified by the clustering algorithms [27] (O(N2)).
Then, the authors use the decision tree [O(R × N), where

TABLE II

COMPLEXITY OF EACH ALGORITHM

Fig. 29. Overlay of our results on the Google Earth.

R is the depth of the tree] based on three properties, namely,
mean height (O(N)), angle (O(N)), and variance (O(N)), to
obtain the curbs. The refinement is based on the trajectory of
the car. The similar candidate curbs, which show similarity in
the lateral distance, are connected in linear time (O(N)).

TML uses elevation thresholding to obtain the ROI (O(N)).
The maximum and minimum thresholds are set to avoid the
extraction of points from the road. Then, the morphological
processing methods are used to obtain the candidate curbs
[no less than O(2 × N2)], including, erosion to remove the
isolated points and dilation to increase the curb candidate set
of points. Refinement is based on the line feature, which is
calculated by thresholding the percentage of rows or columns
higher than a preset percentage, to connect the candidate
points (O(N)). Then, the authors perform a rotation around
the axis to determine the edges based on the trajectory of the
vehicle (O(N)).

CS groups point clouds into road cross sections (O(N))
based on GPS time in the preprocessing step. Then, they use
a sliding window, to extract candidate road areas based on
the fact that the road points at one cross section have the
identical elevation (O(N)), to obtain ROI. The authors detect
curbs based on their three proposed models, including, eleva-
tion jump (O(N)), point density (O(N2)), and slope change
(O(N)). The refinement of the candidate curbs includes using
K -nearest neighbor to cluster them (O(N2)), removing fake
curbs that contain few points (O(N)), and connecting the curbs
that are sorted along the direction of the curbs (O(N)).

Our method calculates the histogram of the elevation to
generate ROI (O(N)) and then calculate sampling density
gradients in each axis direction to obtain the energy for each
point (O(3× N)) followed by the refinement LCPM (O(N3)).

We show all the computational complexities in Table II.
From Table II, the complexity of ours is the same as existing
methods in the preprocessing step and much lower than IEPF,
TML, and CS in the extraction. EEC has a low complexity,
because it only depends on the unreliable elevation difference.
For the refinement, our complexity is higher, because we do
not use any extra information, such as trajectory for IEPF
and TML, or GPS time for CS. However, only our refinement
method achieves global optimization.
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TABLE III

LENGTH AND WIDTH OF THE SELECTED SIX AREAS

5) Results on the 2-D Map: We overlay our results on the
images from Google Earth. As shown in Fig. 29, our results
can match the curbs in the map accurately.

To quantify our results on 2-D map, we compare the
length (L) and width (W ) of selected six places in Google
Earth with our results in Table III.

From Table III, the difference between our results from the
above detected curbs and the Google Earth is 0.006/m and the
mean square error is 2.67. These evaluations show that our
results are accurate and reliable.

VI. CONCLUSION

Curb extraction is essential for understanding road environ-
ments. This paper presents a robust, accurate, and efficient
solution for road curb extraction from mobile LiDAR point
clouds. To the best of our knowledge, this is the most com-
prehensive work on road curb extraction from point clouds.
We evaluate the proposed method on a large-scale residential
area and an urban area. Our algorithm works effectively for
large-scale mobile LiDAR point clouds. Different quantitative
evaluations, including, the TPR, TNR, PPV, and NPV, indicate
that our method is more accurate than the existing algorithms.

Possible directions for the future research include segmen-
tation of scenes, classification of objects, and understanding
of traffic environments.
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